

UNIVERSAL MECHANISM 9

Programming in UM
Environment

2020

User`s manual

Universal Mechanism 9 5-2 Chapter 5. Programming in UM

Contents

5. PROGRAMMING IN UM ENVIRONMENT ... 5-3

5.1. PROGRAMMING IN THE CONTROL FILE .. 5-3
5.1.1. Standard constants, types and variables .. 5-3

5.1.1.1. Unit CtvSt.pas .. 5-3
5.1.1.2. Unit CtvDll.pas .. 5-4

5.1.2. Unit DGetVars.pas .. 5-6
5.1.3. Control File Structure ... 5-6
5.1.4. Full names of elements ... 5-10
5.1.5. Indices of elements ... 5-11
5.1.6. Procedures and functions .. 5-14

5.1.6.1. Number of elements ... 5-14
5.1.6.2. Values of coordinates .. 5-14
5.1.6.3. Kinematics of bodies ... 5-14
5.1.6.4. Operations with 3-vectors and 3x3-matrices ... 5-16
5.1.6.5. Solving linear algebraic equations ... 5-17
5.1.6.6. Additional forces and moments ... 5-18
5.1.6.7. Changing identifiers ... 5-19

5.1.6.7.1. Structures of identifiers .. 5-19
5.1.6.7.2. Standard procedures for changing identifiers ... 5-21
5.1.6.7.3. Programming T-forces .. 5-22
5.1.6.7.4. Change of identifiers parameterizing graphical objects .. 5-23

5.1.6.8. Animation of user’s vectors ... 5-24
5.1.7. Programming external function... 5-27

5.1.7.1. Programming of coordinates – time functions ... 5-27
5.1.7.2. Programming joint and bipolar forces ... 5-30
5.1.7.3. Programming graphical elements: Z-surfaces .. 5-30
5.1.7.4. Programming contact surfaces for contact elements .. 5-33

5.1.8. Debugging control file in Delphi .. 5-39

5.2. CODE IMPLEMENTATION OF FUNCTIONALS... 5-41

5.3. CREATING AND USING EXTERNAL LIBRARIES .. 5-43
5.3.1. Matlab/Simulink interface... 5-44
5.3.2. Declaration of procedures ... 5-44
5.3.3. Features of compiling external libraries .. 5-49

5.3.3.1. Compiling external libraries using C/C++ ... 5-49
5.3.3.2. Compiling external libraries using Pascal .. 5-50
5.3.3.3. Troubleshooting ... 5-51

5.3.4. Including external libraries into UM models .. 5-52
5.3.4.1. Wizard of external libraries ... 5-52
5.3.4.2. Scalar force of Library (DLL) type .. 5-53
5.3.4.3. Simultaneous connection of several libraries ... 5-54

5.3.5. Creating variables for input and output signals ... 5-55
5.3.6. Cascading external libraries .. 5-56
5.3.7. Example of using external libraries... 5-57

Universal Mechanism 9 5-3 Chapter 5. Programming in UM

5. Programming in UM environment

Universal Mechanism supports the following techniques to use user’s defined procedures

within UM models: (1) programming in the Control File (see Sect. 5.1. "Programming in the

Control File", p. 5-3) and programming in the External libraries (see Sect. 5.3. "Creating and

using external libraries", p. 5-43).

In your applied models now it is recommended to use External libraries technique as more

up-to-date and user- and programmer-friendly. However both mentioned techniques can be used

within any one model.

5.1. Programming in the Control File

As a rule, modeling of complex technical systems requires programming by the user in the

UM environment. Available programming languages are: Pascal, Delphi, C and C++. Pro-

gramming is a powerful tool for calculation of complex forces, description of external functions

as well as for control the simulation process. The user may use a number of predefined UM pro-

cedures. Programming is carried out with the help of the control file, which is generated as a part

of equations of motion for the object and every external subsystem presented in the object.

Programming in the UM environment concerns to the simulation module.

The user is responsible for correctness of programming procedures and functions. An exter-

nal debugger can be used for debugging the code.

User can link any number of units to the control file.

5.1.1. Standard constants, types and variables

Consider some constants, types and variables useful for programming in the UM environ-

ment.

5.1.1.1. Unit CtvSt.pas

 Constants

{Type of multiplication of a coordinate vector by a 3x3 matrix c=Ab or

c=A’b)}

NORMAL = 0;

TRANSPON = 1;

 Types

real_ = double; { basic floating-point type }

coordin = array [1..3] of real_; { coordinate vector }

trans_matr = array [1..3,1..3] of real_; { 3x3 – matrix, often a direct co-

sine matrix }

{Dynamic arrays}

VectReal = array [1..MaxArReal] of real_;

VectSing = array [1..MaxArSing] of single;

VectInt = array [1..MaxArInt] of integer;

VectByte = array [1..MaxArByte] of byte;

Universal Mechanism 9 5-4 Chapter 5. Programming in UM

VectChar = array [1..MaxArByte] of char;

{One-dimensional arrays}

VectSPtr = ^VectSing;

VectRPtr = ^VectReal;

VectIPtr = ^VectInt;

VectBPtr = ^VectByte;

VectCPtr = ^VectChar;

MatrReal = array [1..MaxArPtr] of VectRPtr;

MatrInt = array [1..MaxArPtr] of VectIPtr;

MatrByte = array [1..MaxArPtr] of VectBPtr;

{Two-dimensional arrays}

MatrRPtr = ^MatrReal;

MatrIPtr = ^MatrInt;

MatrBPtr = ^MatrByte;

5.1.1.2. Unit CtvDll.pas

Constants

{Indices of UM messages}

 OBJECTLOADED_MESSAGE = -10;

 FIRSTINIT_MESSAGE = 1;

 EQUATIONS_MESSAGE = 10;

 INTEGRBEGIN_MESSAGE = 30;

 INTEGREND_MESSAGE = 40;

 STEPEND_MESSAGE = 50;

 XVABEGIN_MESSAGE = 60;

 XVAEND_MESSAGE = 70;

 INTEGRFORM_MESSAGE = 80;

 IDENT_MESSAGE = 90;

 INITIALS_MESSAGE = 100;

 PAUSE_MESSAGE = 110;

 STEPSINGLE_MESSAGE = 140;

 OBJECTCLOSE_MESSAGE = 150;

 XVASTEP_MESSAGE = 160;

 INTEGRPROCESS_MESSAGE = 180;

 FORCESCALC_MESSAGE = 190;

{Maximal number of external subsystems}

 NSubsMax = 1000;

{Type of object elements}

 eltBody = 1;

 eltJoint = 2;

 eltSubsystem =3;

 eltBFrc = 4;

 eltLFrc = 5;

 eltCFrc = 6;

 eltAFrc = 7;

 eltSFrc = 8;

 eltGO = 11;

 eltIdentifier = 12;

{Types of user’s messages}

 _mtConfirmation = 0;

 _mtInformation = 1;

Universal Mechanism 9 5-5 Chapter 5. Programming in UM

 _mtError = 2;

{Types of contact forces}

 _cftSum = 0;

 _cftNormal = 1;

 _cftFriction = 2;

{Index of system of coordinates for vector components}

 BodyCoordinateSystem = 0;

 BaseCoordinateSystem = 1;

 Variables

t : real_; – current time value during simulation/XVA process;

NSubSystems : integer; – number of external subsystems for the object;

SubIndx : VectIPtr; - array of local indices of external subsystems;

UserVars : array [0..1000] of real_; {elements of the array are available

for plotting in a graphical window}

 Types of standard UM procedures, which can be used by the user

Universal Mechanism 9 5-6 Chapter 5. Programming in UM

5.1.2. Unit DGetVars.pas

The unit contains headers of standard UM procedures, which can be used by the user.

5.1.3. Control File Structure

The control file for an object has the name cl[NameOfObject].pas, where [NameOfObject] is

the object name. The file is a part of equations. It is generated by the Input Module and located

in the object directory. This file is the basis for programming in the UM environment.

Consider the structure of the control file for an object pendulum when external functions are

not presented in the object description.

unit Clpendulum;

interface

uses CtvSt, CtvDll;

procedure UserCalc(_x, _v, _a : VectRPtr; _isubs, _UMMessage : integer; var

WhatDo : integer); cdecl; export;

procedure ControlPanelMessage(_x, _v, _a : VectRPtr; _isubs, _index : inte-

ger; _Value : double); cdecl; export;

procedure TimeFuncCalc(_t : real_; _x, _v : VectRPtr; _isubs : integer);

procedure UserConCalc(_x, _v : VectRPtr; _Jacobi : MatrRPtr; _Error :

Vec3RPtr; _isubs, _ic : integer; _predict : boolean; _nright : integer);

cdecl; export;

procedure EstimationFuncCalc(_optMode : integer; _ECCount : integer;

_ECVectOptPtr : TVectOptPtr; var _GoOn : boolean; var _Estimation : real_;

_Msg : pchar); cdecl; export;

implementation

uses

 DGetVars, pendulumC, _Tpendulum;

procedure TimeFuncCalc(_t : real_; _x, _v : VectRPtr; _isubs : integer);

var

 _ : _pendulumVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

end;

procedure ForceFuncCalc(_t : real_; _x, _v : VectRPtr; _isubs : integer);

var

 _ : _pendulumVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

end;

procedure UserConCalc(_x, _v : VectRPtr; _Jacobi : MatrRPtr; _Error :

Vec3RPtr; _isubs, _ic : integer; _predict : boolean; _nright : integer);

var

 _ : _pendulumVarPtr;

begin

Universal Mechanism 9 5-7 Chapter 5. Programming in UM

 _ := _PzAll[SubIndx[_isubs]];

end;

procedure EstimationFuncCalc(_optMode : integer; _ECCount : integer;

_ECVectOptPtr : TVectOptPtr; var _GoOn : boolean; var _Estimation : real_;

_Msg : pchar);

begin

 _Estimation := 0;

 case _optMode of

 optTest : begin

 _GoOn := false;

 end;

 optPreEstimation : begin

 end;

 optEstimation : begin

 end;

 end;

end;

procedure UserCalc(_x, _v, _a : VectRPtr; _isubs, _UMMessage : integer; var

WhatDo : integer);

var

 Key : integer;

begin

 Key := WhatDo;

 WhatDo := NOTHING;

 case _UMMessage of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 end;

end;

procedure ControlPanelMessage(_x, _v, _a : VectRPtr; _isubs, _index : inte-

ger; _Value : double);

var

 _ : _pendulumVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

end;

end.

The interface part of the file contains headers of 6 procedures:

 TimeFuncCalc

Calculation of all time-dependent function.

 ForceFuncCalc

Calculation of user’s forces.

 UserCalc

Processing UM messages.

 UserConCalc

Additional user-defined constraint equations.

 EstimationFuncCalc

Universal Mechanism 9 5-8 Chapter 5. Programming in UM

Estimation of the criterion function for parametric optimization of object.

 ControlPanelMessage

Processing messages from a control panel.

The first and the second procedures are called from the unit Al[NameOfObject].pas. Struc-

ture of this file is important for programming.

unit Alpendulum;

interface

uses CtvSt, CtvDll;

procedure AllCalc(_x, _v : VectRPtr; var _isubs : integer;

 _kinemat : boolean; _alpha, _alpha2 : real_); cdecl; export;

implementation

uses

 Clpendulum, _Tpendulum, pendulumC, pendulumE, DGetVars;

procedure AllCalc(_x, _v : VectRPtr; var _isubs : integer;

 _kinemat : boolean; _alpha, _alpha2 : real_);

var

 _ : _pendulumVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 _GAlpha := _alpha;

 _GAlpha2 := _alpha2;

 //First call - kinematics

 if _kinemat then begin

 _._ap := CommonData.APredVector;

 try

 TimeFuncCalc(t, _x, _v, _isubs);

 except

 _isubs := -2;

 exit;

 end;

 //Evaluation of trigonometric functions

 _._s1 := sin(_x[1]);

 _._c1 := cos(_x[1]);

 DoElement(_x, _v, 1, _isubs);

 end;

 //Second call – generalized forces

 if CommonData.ForcesCalculation then begin

 _._ap := CommonData.APredVector;

 DoElement(_x, _v, 2, _isubs);

 end;

 //Third call – mass matrix

 if CommonData.MassMatrixCalculation then begin

 _lMassMatrix := CommonData.MMatrixPtr;

 DoElement(_x, _v, 3, _isubs);

 UserPtr1 := _lMassMatrix;

 UserCalc(_x, _v, nil, _isubs, CALCMASSMATRIX_MESSAGE, UserWhatDo);

 end;

end;

end.

Universal Mechanism 9 5-9 Chapter 5. Programming in UM

Procedure AllCalc organizes evaluating elements of equations of motion. The simulation

module calls this procedure three times for every iteration of the simulation process to obtain

 kinematical variables (positions, velocities);

 generalized applied and inertia forces;

 mass matrix.

Evaluation of the elements above is executed in the procedure DoElement, which is called

three times.

Call of the procedure TimeFuncCalc is located before evaluation of kinematical variables,

therefore some kinematical quantities can be calculated or initialized in the procedure Time-

FuncCalc. This procedure cannot be used for computing forces, which depend on the current

kinematical variables.

Do not forget to make backup copies of the control file!

Universal Mechanism 9 5-10 Chapter 5. Programming in UM

5.1.4. Full names of elements

The full name of an object element (body, joint etc.) contains its own name as well as names

of all subsystems (external and internal), which belong to the path from the subsystem of the el-

ement to the object root.

To get the whole list of element names for an object:

1. run Input program (UM Input);

2. open the object;

3. create the file of element with the help of the Tools | File of elements… menu command.

The file n[NameOfObject].txt appears automatically in the built-in text and stored in the ob-

ject directory.

Example of the file of elements

Object : vehicle

********************List of bodies***********************

 Body

 Bogie1.Frame

 Bogie1.WMSet1.Motor

 Bogie1.WMSet1.Rotor

 Bogie1.WMSet1.GearRim

………………………………………………………………..

********************List of joints**********************

 jCarBody

 Bogie1.jFrame

 Bogie1.WMSet1.jMotor

 Bogie1.WMSet1.jRotor

 Bogie1.WMSet1.jGearRim

………………………………………………………………………..

********************List of identifiers**********************

 v0

 xsh

 mc

 icx

 icy

 Bogie1.ixframe

 Bogie1.iyframe

 Bogie1.dz2

 Bogie1.fwnl2

………………..

Universal Mechanism 9 5-11 Chapter 5. Programming in UM

5.1.5. Indices of elements

The user utilizes names of elements (bodies, joints and so on) for their identification in the

Input module. But internal identification of elements uses their indices. Indexing is used to or-

ganize access to body kinematical variables, to value of coordinates and other data, which are

necessary for programming.

Indexing starts with 1.

All elements except external subsystems have two indices:

1. Index of an external subsystem isubs (1..NSubSystems) the element belongs to. If an object

does not contain external subsystems, this index is always 1.

2. Local index of the element within the corresponding external subsystem (object).

Indexing is foreseen for the following elements:

 Subsystems

 Graphical objects

 Coordinates

 Bodies

 Joints

 Bipolar forces

 General forces

 Linear forces

 Contact forces

 Special forces

 Identifiers

The user can determine indices in two ways.

1. The Indices tab of the object constructor in the UM Input program.

An example is shown in Figure 5.1. The object contains 2 external subsystems. Elements of

every type are presented as a two-level tree. The first level corresponds to the type of element,

the second level – to elements (joints in Figure 5.1) within the corresponding indices. If the ele-

ment belongs to the subsystem, its name begins with the name of the subsystem and point. For

instance, the graphical object called Rotor belonging to the subsystem Electricmotor, has the

name "Elektricmotor.Rotor" and the index 4. subsystem.

This method for defining element indices has an essential disadvantage. Deleting or adding

of elements or subsystems can change indices. Therefore, the second method is more reliable.

Universal Mechanism 9 5-12 Chapter 5. Programming in UM

Figure 5.1.

Getting indices by element names.

The following function is used to get indices be full element name:

function GetElementIndexByName(elType : integer; const Name : string;

var index, isubs : integer): integer; cdecl;

Input parameters:

elType – type of element from the following list:

Type Comments

eltBody Body

eltJoint Joint

eltSubsystem Subsystem

eltBFrc Bipolar force

EltLFrc Linear force element

EltCFrc Contact force element

EltAFrc General force

EltSFrc Special force

EltGO Graphical object

EltIdentifier Identifier

Name is a full element name.

Output:

Universal Mechanism 9 5-13 Chapter 5. Programming in UM

index : local index of element;

isubs : index of external subsystem;

return value : 0 (success), -1 element not found.

Instructions

Use the UserCalc procedure in the control file and the FIRSTINIT_MESSAGE to get all

necessary indices. This message is sent by Simulation module directly after loading object.

Use global or static variables as identifiers of indices.

Example

Indices of two linear force elements are determined in the example.

procedure UserCalc;

var Key : integer;

begin

 Key :=WhatDo;

 WhatDo:=NOTHING;

 case UMMessage of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 FIRSTINIT_MESSAGE : begin

 If GetElementIndexByName(eltLFrc,'Bogie1.WMSet1.SpringLeft',

 LFrc1Indices[1,1], LFrc1Subs[1,1])=-1 then

 UMMessage(' Element not found: Bogie1.WMSet1.SpringLeft ', _mtError);

 If GetElementIndexByName(eltLFrc,'Bogie1.WMSet1.SpringRight',

 LFrc1Indices[2,1], LFrc1Subs[2,1])=-1 then

 UMMessage('Element not found: Bogie1.WMSet1.SpringRight ', _mtError);

 end;

 end;

end;

Universal Mechanism 9 5-14 Chapter 5. Programming in UM

5.1.6. Procedures and functions

Access to UM procedures and functions is carried out with the help of the header unit DGet-

Vars.

The input parameter isubs used below is the index of external subsystem.

5.1.6.1. Number of elements

To determine element count in object or external subsystem you should use the following

function:

 function GetNElements (elType,isubs : integer) : integer;

Input parameters

elType – type of element from the list

Type Comments

eltBody Body

eltJoint Joint

eltSubsystem Subsystem

eltBFrc Bipolar force

eltLFrc Linear force element

eltCFrc Contact force element

eltAFrc General force

eltSFrc Special force

eltGO Graphical object

EltIdentifier Identifier

The function returns the number of elements of the indicated type or –1 if it is failed.

5.1.6.2. Values of coordinates

 function GetCoord(nr, isubs : integer) : real_;

The function returns the value of the coordinate with index]..1[esNCoordinatnr where

NCoordinates is the number of coordinates in external subsystem isubs.

 function GetCoordDer(nr, isubs : integer) : real_;

The function returns the value of the first derivative of coordinate with index

]..1[esNCoordinatnr where NCoordinates is the number of coordinates in external subsystem

isubs.

5.1.6.3. Kinematics of bodies

 procedure GetPoint(body, isubs : integer; ro : coordin; var r : coordin);

Input: body – index of a body, ro – coordinates of a point in the body-fixed SC.

Output: r – coordinates of the point in SC0.

 procedure GetVel(body, isubs : integer; ro : coordin; var v : coordin);

Universal Mechanism 9 5-15 Chapter 5. Programming in UM

Input: body – index of a body, ro – coordinates of a point in the body-fixed SC.

Output: v – components of the velocity vector in SC0.

 procedure GetAi0(body,isubs : integer; var ai0 : Trans_Matr);

Input: body – index of a body.

Output: direct cosine matrix ai0 for the body.

Remark. The matrix Ai0 converts vector components from SC0 to the body-fixed SC, i.e.

𝑟𝑖 = 𝐴𝑖0𝑟
0. The transposed matrix carries out the inverse transformation

𝑟0 = 𝐴0𝑖𝑟
𝑖 = 𝐴𝑖0

𝑇 𝑟𝑖.

 procedure GetVelAng(body, isubs : integer; var om : coordin);

Input: body – index of a body.

Output: angular velocity om of the body in SC0.

A group of procedures determines relative position and motion of a pair of bodies. They have

the following common input parameters:

bd1, bd2 – indices of bodies, motion of bd2 relative to body bd1 is computed;

isubs1, isubs2 – indices of external subsystems containing the bodies;

bdref, isubsref – indices of a reference body and the corresponding subsystem. Results are

presented in the reference body-fixed SC. If bdref is 0, output vectors are resolved in SC0.

 procedure GetRelVeloc(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer; const ro2 : coor-

din; var v12 : coordin);

Output: velocity vector v12 of point ro2 of body bd2 relative to body bd1. Vector ro2 is re-

solved in SC of body bd2.

 procedure GetRelAcc(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer; const ro2 : coordin;

var a12 : coordin);

Output: acceleration vector a12 of point ro2 of body bd2 relative to body bd1. Vector ro2 is

resolved in SC of body bd2.

The procedure can be used exclusively as processing the STEPSINGLE_MESSAGE,

STEPEND_MESSAGE as well as XVASTEP_MESSAGE in the procedure UserCalc.

 procedure GetRelAng(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

var ang12 : coordin; var angle : real_);

Output: rotation vector ang12 as well as the value angle of the turning angle of body bd2 rel-

ative to body bd1.

 procedure GetRelVelAng(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

var om12 : coordin);

Output: vector of angular velocity om12 of body bd2 relative to body bd1.

 procedure GetRelAccAng(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

Universal Mechanism 9 5-16 Chapter 5. Programming in UM

var e12 : coordin);

Output: angular acceleration vector e12 of body bd2 relative to body bd1.

The procedure can be used exclusively as processing the STEPSINGLE_MESSAGE,

STEPEND_MESSAGE as well as XVASTEP_MESSAGE in the procedure UserCalc.

 procedure GetRelCoord(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

const ro1, ro2 : coordin; var r12 : coordin);

Output: vector r12, connecting two points of the bodies. The points are defined by vectors

ro1, ro2 in SC of the corresponding bodies.

 procedure GetRelVelPoints(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

const ro1, ro2 : coordin; var v12 : coordin; var v : real_);

Output: vector of bipolar velocity v12 as well as its value v. Consider two points of body bd1

and body bd2, which coordinates are given by ro1 and ro2 in the body-fixed SC. Velocity v is

the derivative of the distance between these points. Vector v12 can be found from the formula

𝑣12 = 𝑣𝑒12 where 𝑒12 is the unit vector directed from the first to the second point, |𝑣12| = |𝑣|.

 procedure GetRelAccPoints(bd1, isubs1, bd2, isubs2, bdref, isubsref : integer;

const ro1, ro2 : coordin; var a12 : coordin; var a : real_);

Output: vector of bipolar acceleration a12 as well as its value a. Consider two points of body

bd1 and body bd2, which coordinates are given by ro1 and ro2 in the body-fixed SC. Accelera-

tion a is the second derivative of the distance between these points. Vector v12 can be found

from the formula 𝑎12 = 𝑎𝑒12 where 𝑒12 is the unit vector directed from the first to the second

point, |𝑎12| = |𝑎|.

The procedure can be used exclusively as processing the STEPSINGLE_MESSAGE,

STEPEND_MESSAGE as well as XVASTEP_MESSAGE in the procedure UserCalc.

5.1.6.4. Operations with 3-vectors and 3x3-matrices

The following procedures and functions are useful for operations with kinematic vectors (co-

ordinates, velocities, accelerations, the coordin type) and 3x3-matrices (the trans_matr type).

 procedure Mult_vec_val(var a : coordin; r : real_; var b : coordin);

Multiplies a vector a by a scalar с, b=ca

 function ScalarMult(var a, b : coordin) : real_;

The function returns the scalar product of two vectors.

 function Vect_Len(var a : coordin) : real_;

The function returns the length of a vector a.

 function Vect_Mult(a, b : coordin; i : integer) : real_;

The function returns the i-th component of the cross product ba .

 procedure Mult_Vect(a, b : coordin; var c : coordin);

Universal Mechanism 9 5-17 Chapter 5. Programming in UM

Output: cross product of two vectors c=ab.

 procedure Turning(angle : real_; e : coordin; var a10 : trans_matr);

The procedure realises the known formula of finite rotation. Let SC1 be the result of rotation

of SC0 by the angle phi about the vector e. The procedure output is the direct cosine matrix A10.

If e=0, A10=I (the identity matrix).

 procedure MkVectAng(var angle : real_; var rvect : coordin; var a10 : trans_matr);

This is the inverse procedure to the procedure Turning. Let the SC1 orientation be the result

of turning the SC0 by angle angle around vector e. The procedure output is the vector e and the

rotation angle calculated by the direct cosine matrix a10.

 procedure GetRotAngles(const A: trans_matr; i, j, k: integer; var ai, aj, ak: real_);

Input: direct cosine matrix A , sequence of rotations i, j, k]3,2,1[.

Output: Three orientation angles ai, aj, ak: akAajAaiAA kji .

 procedure Mult_m_v_3x1(type_ :byte; var a: trans_matr; b: coordin; var c: coordin);

Input: matrix A, vector b and type of multiplication type_.

Output:

TRANSPON type_,

N type_,

bA

ORMALAb
с

T

Remark. The procedure is usually used to resolve vectors in different SC.

 procedure Mult_m_m(a,b : trans_matr; var c : trans_matr);

Output: ABC (the product of two 3x3 matrices).

 procedure Mult_mT_m(a,b : trans_matr; var c : trans_matr);

Output: BAC T (the product of two 3x3 matrices).

 procedure Mult_m_mT(a,b : trans_matr; var c : trans_matr);

Output:
TABC (the product of two 3x3 matrices).

 procedure Mult_mT_mT(a,b : trans_matr; var c : trans_matr);

Output:
TT BAC (the product of two 3x3 matrices).

5.1.6.5. Solving linear algebraic equations

 procedure GaussCalc(a, b : MatrRPtr; na, nb: integer; var code : integer; eps : real_);

The Gauss elimination procedure for solving the linear algebraic matrix equation AX=B

based on the column pivoting.

Input:

a is a square naxna matrix. It is not conserved;

Universal Mechanism 9 5-18 Chapter 5. Programming in UM

b is a naxnb matrix of the right-hand side. The matrix is not conserved.

Eps is a positive number determining matrix singularity. The eps=1.0e-12 value is recom-

mended.

Output:

b is the equation solution;

code equals 1 if the solution is obtained, 0 if the matrix A is singular.

The MatrRPtr type corresponds to a dynamic matrix.

 procedure GaussSingleCalc(a, b: pointer; na : integer; var code : integer; eps : real_);

The Gauss elimination procedure for solving the linear algebraic equation Ax=b with non-

singular matrix A. Pivot elements are looked for columns.

 Input:

a – matrix A; type – MatrRPtr; it is not conserved;

b – one-dimensional vector of the right-hand side (VectRPtr);

na – size of the matrix A equal na*na;

Eps is a positive number determining matrix singularity. The eps=1.0e-12 value is recom-

mended.

 Output:

b is the equation solution;

code equals 1 if the solution is obtained, 0 if the matrix A is singular.

5.1.6.6. Additional forces and moments

The user can compute additional forces and moments, which are not included in the object

description in the Input Module. The additional forces can be calculated either in the Force-

FuncCalc procedure (Sect. 5.1.3. "Control File Structure", p. 5-6) or by processing the

FORCESCALC_MESSAGE in the UserCalc procedure.

Procedures below are used for adding the additional forces to the object. The CoordSystem

in the procedures detects a SC of the force or/and moment. Values of this parameter are:

BaseCoordinateSystem – SC0;

BodyCoordinateSystem – body-fixed SC (for the second body in AddForceToBod-

yAtPoint).

For all cases except the AddForceToBodyAtPoint procedure, the forces should be applied

to the origin of the body-fixed SC.

Functions return 0 if succeed else –1.

 function AddForceToBody(ibody, isubs : integer; Force : coordin;

CoordSystem : integer) : integer;

Adds the force Force to body (ibody, isubs).

 function AddMomentToBody(ibody,isubs : integer; Moment : coordin;

 CoordSystem : integer) : integer;

Adds the moment Moment to body (ibody, isubs).

Universal Mechanism 9 5-19 Chapter 5. Programming in UM

 function AddForceToBodyAtPoint(ibody1,isubs1, ibody2, isubs2: integer;

Point, Force, Moment : coordin; CoordSystem : integer) : integer;

Adds a force and a moment to a pair of interacting bodies (ibody1, isubs1) and (ibody2,

isubs2). The Force and the Moment act on the second body (ibody2, isubs2) at the point Point

(coordinates are given in SC of the second body).

Example

Add the applied external force (0, 1000, 0), resolved in SC0, to body (1, 1) applied to the

point (0, 0, 0.5) in SC1.

procedure ForceFuncCalc(_t : real_; _x, _v : VectRPtr; _isubs : integer);

const

 Point : coordin = (0, 0, 0.5);

 Force : coordin = (0, 1000, 0);

 Moment : coordin = (0, 0, 0);

begin

 AddForceToBodyAtPoint(0, 1, 1, 1, Point, Force, Moment, BaseCoordinateSys-

tem);

end;

5.1.6.7. Changing identifiers

UM allows parameterization of the object description. Changing parameters gives a powerful

tool for analysis of object dynamics.

The user often changes identifiers directly before starting the integration process with the

help of UM interface abilities. Another way for changing is programming identifiers in the con-

trol file.

From the other hand, changing some identifiers during the simulation process can lead to

wrong simulation results because it does not correspond to laws of mechanics. Here are these

parameters:

 inertia parameters: masses and inertia moments;

 joint geometrical coordinates;

 identifiers, which parameterize a graphical object, if GO are used for automatic computing

the inertia parameters.

It is necessary to restart the simulation process after changing these identifiers.

5.1.6.7.1. Structures of identifiers

Identifiers introduced by the user for object parameterization are included in structures (‘rec-

ords’ in the Pascal notation) in the object equations. These structures are not the same for differ-

ent external subsystems. Types of the structures can be found in the file _T[NameOfObject] gen-

erated by the Input Module as a part of equations and located in the directory of the object or ex-

ternal subsystem.

A structure is built strictly according to the tree of included subsystems. The identifying

names of subsystems are used as names of substructures (subrecords), which include identifiers

of the corresponding included subsystem.

Universal Mechanism 9 5-20 Chapter 5. Programming in UM

Example. The object Vehicle contains two included subsystems with identifying names

WMBlock1 and WMBlock2. Each of these subsystems contains one included subsystem with

identifying name Wset. In this case the object identifiers are presented by the following struc-

ture:

_vehicleVars = record

 v0 : real_;

 xsh : real_;

 WMBlock1 : record

 xmotor : real_;

 rrotor : real_;

 ………………………….

 wset : record

 mw : real_;

 iwx : real_;

 ………………………….

 end;

 end;

 WMBlock2 : record

 v0 : real_;

 yspring : real_;

 wset : record

 mw : real_;

 iwx : real_;

 ………………………….

 end;

 ………………………….

 end;

 ………………………

end;

The user has access to the identifiers with the help of variables

_PzAll, _PzAll[NameOfObject]

which are declared in the unit [NameOfObject]C.pas. These variables are pointers on one and the

same array of structures. The length of the array of structures is always 1 for the root object,

whereas it is equal to number of kinematically identical external subsystems included in the ob-

ject and having the same ancestor.

For instance, the object Train contains 11 external subsystems. One of the subsystems has

the object Locomotive as the ancestor, the other ten subsystems – the object Car. In this case the

length of the array is 1 for the subsystem with the ancestor Locomotive, the structure of identifi-

ers can be found in the unit …\Locomotive_TLocomotive.pas, the variables _PzAll,

_PzAllLocomotive are declared in the unit …\Locomotive\LocomotiveC.pas. Identifiers for all

other subsystems with the ancestor Car are included in the arrays _PzAll and _PzAllCar with

length 10. These variables are declared in the unit …\Car\CarC.pas, the type of the correspond-

ing structure is declared in the unit …\Car_TCar.pas.

Access to the identifiers has the following syntax:

_PzAll[NameOfObject].[Element of structure of identifiers]

or

_PzAll[SubIndx[isubs]].[Element of structure of identifiers]

Examples:

_PzAllVehicle[1].xsh

_PzAll[1].WMBlock1.xmotor

_PzAll[1].WMBlock2.Wset.mw

Universal Mechanism 9 5-21 Chapter 5. Programming in UM

Access to identifiers is more simple if the object does not contain any subsystem, neither ex-

ternal nor included. In this case the array of structures contains one element and the structure of

identifiers does not contain substructures. Examples:

_PzAll[1].mass

_PzAll[1].ix

_PzAll[1].something

_PzAllMyObject[1].some_identifier

5.1.6.7.2. Standard procedures for changing identifiers

Identifier values can be changed in two ways depending on type of object elements, which

description is parameterized.

The first way consists in changes identifiers without modification their values in the kernel of

the simulation module. This method is used if the evaluation of element is concentrated exclu-

sively in the DLL of the object. Here is the list of such elements:

 Geometric and kinematic characteristics (there exist exceptions)

 Generalized linear force elements (not external)

 T-forces

A new value can be simply set to the identifier in the corresponding procedure of the control

file, for instance

_PzAllMyObject[1].some_identifier:=0.1

The second method changes identifier both in the DLL and in the simulation module kernel.

This way is necessary if the evaluation of the corresponding element (e.g. a force) is executed in

the kernel. The user should send the new value to the kernel. Elements of this type are

 Inertia parameters;

 Identifiers parameterizing graphical objects;

 Identifiers parameterizing bipolar, external linear, contact force element, special force ele-

ments. Generalized linear force elements (not external)

 T-forces

The following procedure send a new identifier value to the kernel:

procedure SetIdentifierValue(index,isubs : integer; value : real_)

where index, isubs are identifier indices, real_ – new value.

After that the procedure refreshing the element parameter should be called (except of T-

forces and direction of gravity)

function RefreshElement(elType,index, isubs : integer) : integer

where elType is the type of element (Sect. 5.1.1.2. "Unit CtvDll.pas", p. 5-4), index, isubs are

indices of the element.

Universal Mechanism 9 5-22 Chapter 5. Programming in UM

5.1.6.7.3. Programming T-forces

Forces of general type are used for programming of complex T-force models. (Sect. 2.4.8,

3.3.10.4). Description of these forces allows parameterizing both force and moment components

and coordinates of application point. The corresponding identifiers can be arbitrary changed dur-

ing the simulation process either in the procedure ForceFuncCalc, which is called by the

FORCESCALC_MESSAGE in the procedure UserCalc.

Example:

var index_frc1x : integer;

procedure ForceFuncCalc(_t: real_; _x, _v: VectRPtr; _isubs: integer);

var _ : _balanzVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 SetIdentifierValue(index_frc1x, 1, sin(2*_t));

 //Harmonic excitation along X

end;

procedure UserCalc;

var i : integer;

begin

 WhatDo:=NOTHING;

 case CurrEvent of

 FIRSTINIT_MESSAGE : begin

 GetElementIndexByName(eltIdentifier, 'fc1x', index_frc1x, i);

 //Store the identifier index in a global variable

 end;

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, x, v, isubs);

 except

 WhatDo := -1;

 end;

 end;

 end;

end;

Remark. Programming forces of general type is an old approach. Use additional forces in-

stead (Sect. 5.1.6.6. "Additional forces and moments", p. 5-18).

Universal Mechanism 9 5-23 Chapter 5. Programming in UM

5.1.6.7.4. Change of identifiers parameterizing graphical objects

Sometimes it is necessary to change graphical objects depending on time. As a rule, these are

GO assigned to the scene. Usage of Z-surfaces gives opportunity to do it. Another way consists

in change of identifiers parameterizing graphic elements in processing the

STEPEND_MESSAGE and XVASTEP_MESSAGE.

To change identifier values use the procedure SetIdentifierValue. After that refresh the GO

with the halp of the procedure RefreshElement.

SetIdentifierValue(indexIdent,isubsGO; value);

RefreshElement(eltGO,indexGO, isubsGO);

Example. It is necessary to change the position of a GO assigned to the scene image. The

name of the GO is Scene. The GO position (e.g. its coordinate X relative to SC0) is set by the

identifier xscene. The object does not contain subsystems.

Var IndexGO: integer;

 IndexIdent : integer;

 OldIdentValue : real_;

procedure UserCalc;

var Key : integer;

 i : integer;

begin

 Key :=WhatDo;

 WhatDo:=NOTHING;

 case UMMessage of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 FIRSTINIT_MESSAGE : begin

 OldIdentValue:=PzAll[1].xscene; //Store the old value

 GetElementIndexByName(eltIdentifier,'xscene',IndexIdent, i]);

 If GetElementIndexByName(eltGO,'Scene',IndexGO, i])=-1 then

 UMMessage('Element scene not found, _mtError);

 end;

 STEPEND_MESSAGE : begin

 //Setting the new value and refresh GO

 PzAll[1].xscene:=0.2*sin(2*t);

 SetIdentifierValue(IndexIdent, 1, PzAll[1].xscene);

 RefreshElement(eltGO, IndexGO, 1)

 end;

 INTEGREND_MESSAGE : begin //Set back the old value

 PzAll[1].xscene:= OldIdentValue;

 SetIdentifierValue(IndexIdent, 1, PzAll[1].xscene);

 RefreshElement(eltGO, IndexGO, 1)

 end;

 end;

GO will oscillates along the X axis.

Universal Mechanism 9 5-24 Chapter 5. Programming in UM

5.1.6.8. Animation of user’s vectors

The used might create a list of vectors, which values are computed in the control file. This

list is created for animation of nonstandard vectors, which cannot be obtained with the help of

the wizard of variables.

The function

function AddUserVector(var Name : string; vtype : integer) : integer;

creates and adds a new vector to the list, and returns the reference index of the vector. The

index is used for assignment new values to the vector during the simulation.

Input: Name – name of the vector; vtype – type of the vector. The type is one of the following

list (Sect. 5.1.1.2. "Unit CtvDll.pas", p. 5-4):

(vtNoType, vtVelocity, vtAcceleration, vtRotation, vtAngularVelocity, vtAngularAcceleration,

vtForce, vtMoment)

The type should be convert to integer, for example ord(vtVelocity).

Call of this function is allowed in the procedure UserCalc for processing the

FIRSTINIT_MESSAGE.

To change the vector value use the procedure

function SetVectorValue(index : integer; Value, Point : coordin) : integer;

where index is the vector index, , Value, Point – their values and application points in SC0. The

function returns 0 if succeed.

The function should be included in processing the STEPEND_MESSAGE and

XVASTEP_MESSAGE in the procedure UserCalc.

Access to the user vectors is carried out in the User | Vectors tab of the wizard of variables.

Example.

Consider a model of a spherical crusher (the object Crusher in the Tutorial directory). This

model illustrates addition of rotations of a body. User’s vectors are used to animate vectors of

absolute and relative angular velocities of the central sphere (not, that all these vectors can be

obtained directly with the help of the wizard of variables).

Universal Mechanism 9 5-25 Chapter 5. Programming in UM

Consider the corresponding control file.

The following global variables are introduced:

var avIndex : integer; //index of absolute angular velocity vector

 rvIndex : integer; // index of relative angular velocity vector

 evIndex : integer; // index of transient angular velocity vector

 BodyIndex : integer; //index of the crusher body

 CrusherIndex : integer; // index of the central sphere body

The procedure UserCalc looks like this:

procedure UserCalc(_x, _v, _a : VectRPtr; _isubs, _UMMessage : integer; var

WhatDo : integer);

const ro0 : coordin = (0,0,0);

var

 Key : integer;

 s : string;

 oma : coordin; //Absolute angular velocity

 ome : coordin; // Transient angular velocity

 omr : coordin; //Relative angular velocity

 i : integer;

begin

 Key := WhatDo;

 WhatDo := NOTHING;

 case _UMMessage of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 FIRSTINIT_MESSAGE : begin

//Adding user’s vectors

 s:='Absolute ang. veloc.';

 avIndex:=AddUserVector(s,Ord(vtAngularVelocity));

 s:='Realtive ang. veloc.';

 rvIndex:=AddUserVector(s,Ord(vtAngularVelocity));

 s:='Transient ang. veloc.';

Universal Mechanism 9 5-26 Chapter 5. Programming in UM

 evIndex:=AddUserVector(s,Ord(vtAngularVelocity));

 GetElementIndexByName(eltBody,'Body',BodyIndex,key);

 GetElementIndexByName(eltBody,'Crusher',CrusherIndex,key);

 end;

 XVASTEP_MESSAGE,

 STEPEND_MESSAGE : begin

//Calculate vectors

 GetVelAng(CrusherIndex,1,oma);

 GetVelAng(BodyIndex,1,ome);

 for i:=1 to 3 do omr[i]:=oma[i]-ome[i];

//Send vector values and positions of origins

 SetVectorValue(avIndex,oma,ro0);

 SetVectorValue(rvIndex,omr,ro0);

 SetVectorValue(evIndex,ome,ro0);

 end;

 end;

end;

Universal Mechanism 9 5-27 Chapter 5. Programming in UM

5.1.7. Programming external function

External functions are used for description of the following elements:

 joint coordinates – time functions (rotational, translational joints, joints of generalized type,

Sect. 3.3.9);

 joint force and torque (joint of generalized type, Sect. 3.3.9.4);

 bipolar force element (Sect. 3.3.10.1);

 contact force elements of types Z-sphere, Z-circle;

 special force element of the type ComboFriction;

 graphical elements Z-surface.

For all the above cases, the user enters identifiers of external functions in the Input module.

Calculation of functions must be programmed in the control file.

Headers of the corresponding functions are generated automatically in the control file. The

default values are zeroes.

If you modify an object, which equations of motion has already been generated before, and

add, delete or rename one or several external functions, you should correct the old control file.

Use the new variant of the control file (Cl[NameOfObject].new) to find added headers, if the op-

tion Rewrite control file is switched off by the generation of equations. If the option Rewrite con-

trol file is switched on (not recommended!), the old file is renamed to Cl[NameOfObject].new.

Transfer old code from this file to the new version.

5.1.7.1. Programming of coordinates – time functions

Consider a slider-crank mechanism (Figure 5.2, the object CrankRod is located in the direc-

tory Tutorial). The external function with the name phi is introduced for dependence of the crank

rotation as a time function.

Universal Mechanism 9 5-28 Chapter 5. Programming in UM

Figure 5.2.

Generator of equation of motion inserts the following procedure in the control file:

procedure phi(_isubs : integer; _t : real_; var _Value, _dValue, _ddValue :

real_);

var _ : _crankrodVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 _Value := 0;

 _dValue := 0;

 _ddValue := 0;

end;

The user should write here a code for calculation of the angle (the variable _Value), its first

and second time derivatives (_dValue, _ddValue). In addition, the unit AlCrankRod contains the

call of the procedure phi directly after the procedure TimeFuncCalc:

 TimeFuncCalc(t, _x, _v, _isubs);

 phi(_isubs, t, _._timefunc1, _._timefunc1_1, _._timefunc1_2);

Object identifiers are very useful for programming external functions. Four additional identi-

fiers are introduced by description of the mechanism in the Input module:

phi0, ampl, om, mode

These identifiers do not parameterized any object element. They are intended for program-

ming of the function phi exclusively. The parameters can be changed either before on in process

of the simulation.

Consider the following version of the procedure code:

procedure phi(_isubs : integer; _t : real_; var _Value, _dValue, _ddValue :

real_);

var _ : _crankrodVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 case round(_.mode) of

 0 : begin //Uniform rotation

 Value:=.om*_t+_.phi0;

 dValue:=.om;

 _ddValue:=0;

 end;

 1 : begin //Harmonic oscillations

 Value:=.ampl*sin(_.om*_t)+_.phi0;

Universal Mechanism 9 5-29 Chapter 5. Programming in UM

 dValue:=.ampl*_.om*cos(_.om*_t);

 ddValue:=-.ampl*_.om*_.om*sin(_.om*_t);

 end;

 end;

end;

Note, that the variable ‘_’ is for organization of success to the object identifiers (_.om corre-

sponds to the identifier om). The same procedure can be rewrite in a different manner:

procedure phi(_isubs : integer; _t : real_; var _Value, _dValue, _ddValue :

real_);

begin

 with _PzAll[SubIndx[_isubs]]^ do

 case round(mode) of

 0 : begin //Uniform rotation

 _Value:=om*_t+phi0;

 _dValue:=om;

 _ddValue:=0;

 end;

 1 : begin //Harmonic oscillations

 _Value:=ampl*sin(om*_t)+phi0;

 _dValue:=ampl*om*cos(om*_t);

 _ddValue:=-ampl*om*om*sin(om*_t);

 end;

 end;

end;

The identifier mode in the procedure is used as a switch, which turns on/off two modes of the

crank prescribed motion: mode=0 the uniform rotation; mode=1 the harmonic oscillations. The

identifier om set an angular velocity in the first mode and on oscillation frequency – in the sec-

ond. The identifier ampl is ignored in the first mode and sets an oscillation amplitude in the sec-

ond one. The identifier phi0 sets an initial angle.

Desirable values of the identifiers can be set before each start of the simulation. Same simu-

lation results are given in Figure 5.3 and Figure 5.4.

Figure 5.3. Module of reaction force in the crank-Base (left) and the slider acceleration for

mode=1, om=1, ampl=2, phi0=0.

Universal Mechanism 9 5-30 Chapter 5. Programming in UM

Figure 5.4. Module of reaction force in the crank-Base (left) and the slider acceleration

for mode=0, om=3, phi0=0.

Remark. Be careful while programming the first and the second time derivatives. Errors

lead to completely wrong simulation results.

5.1.7.2. Programming joint and bipolar forces

Programming of external bipolar functions in a Control File is not supported since UM 5.0.

5.1.7.3. Programming graphical elements: Z-surfaces

In this section we consider usage of Z-surfaces for creation of dynamic time-dependent im-

ages (Figure 5.5, the object Float in the directory Tutorial). The graphical element here is used

for animation of waves. The surface is described by a graphic element Z-surface with the name

Waves. The graphical object containing this element is assigned to the scene image. Note, that

the surface is not fully described in the Input module, therefore it is seen there as a filled rectan-

gle with the corresponding sizes (103 m).

Universal Mechanism 9 5-31 Chapter 5. Programming in UM

Figure 5.5.

After generation of equations the control file includes reference for the external function in

the standard function ZgraphicElementFunctions. This function must include description of all

external Z-functions. The function ZgraphicElementFunctions is called by the simulation

module every time, when the graphic element is refreshed (by loading the object, by changing

the object parameters in the corresponding window, after calling the user’s procedure Re-

freshElement(eltGO,…)).

function ZGraphicElementFunctions(_index, _isubs : integer; _p1, _p2 : real_

) : real_;

var

 _ : _floatVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 case _index of

 0 : begin

 { Function waves }

 Result := 0;

 end;

 end;

end;

Note that the name of the external function waves is located as a comment in the case state-

ment of the function ZgraphicElementFunctions

{ Function waves }

Directly here the function should be calculated. The default value if the function is zero, and

the element looks like a filled rectangle.

The user organizes calculation of external functions in the function ZGraphicElementFunc-

tions in dependence on two Cartesian coordinates (parameters p1, p2). In the considered exam-

ple, calculation of the wave image is done in the separate function Wave. The surface depends

from the y-coordinate (_p2) and time. The function is a sum of 10 trigonometric functions with

various amplitudes, frequencies and time-dependent phases.

Universal Mechanism 9 5-32 Chapter 5. Programming in UM

function Wave(t,p : real; var deriv : real_) : real_;

var i : integer;

 phase : real_;

begin

 Result := 0; Deriv:=0;

 for i:=1 to 10 do begin

 phase := p*i*2+2*t*i*sqrt(i)+ln(i);

 Result:=Result+sin(phase)/i/i/5;

 Deriv:=Deriv+2*cos(phase)/i/10;

 end;

end;

The function output is the z-coordinate of the surface (returned value) and its derivative w.r.t.

the y-coordinate (deriv). Of course, the derivative is not used by graphic image but it is neces-

sary for computing hydrodynamic forces acting on the float.

The function ZgraphicElementFunctions calls the function Wave:

function ZGraphicElementFunctions(_index, _isubs : integer; _p1, _p2 : real_

) : real_;

var h : real_;

begin

 _ := _PzAll[SubIndx[_isubs]];

 case _index of

 0 : begin

 { Function waves }

 Result:=Wave(t,_p2,h);

 end;

 end;

end;

The function Wave depends of time, but the dependence does not affect the image if the GO

is not refreshed before drawing. Use the StepEnd_Message in the procedure UserCalc.

procedure UserCalc(_x, _v, _a : VectRPtr; _isubs, _UMMessage : integer; var

WhatDo : integer);

var Key : integer;

begin

 Key := WhatDo;

 WhatDo := NOTHING;

 case _UMMessage of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 IntegrEnd_Message,

 StepEnd_Message : RefreshElement(eltGO,1,1);

 end;

end;

Calling the refresh at the message IntegrEnd_Message sets the initial image state (t=0) after

the end of simulation.

Remarks.

1. It is necessary to process the messages XVASTEP_MESSAGE and

XVAEND_MESSAGE in the same manner as the messages IntegrEnd_Message,

StepEnd_Message to obtain the same wave animation for the XVA-analysis as for the sim-

ulation:

 XVAEnd_Message,

 XVAEnd_Message : RefreshElement(eltGO,1,1);

Universal Mechanism 9 5-33 Chapter 5. Programming in UM

2. If an external function is modified after creation of an XVA-file, the animation during the

XVA-analysis is not match to the XVA-file.

Consider the float-wave interaction. We programmed additional forces, which values depend

on the wave motion and the float position relative to the wave. Note, that we used highly simpli-

fied mathematical model of the hydrodynamic forces.

The hydrodynamic forces are computed in the procedure ForceFuncCalc.

procedure ForceFuncCalc(_t : real_; _x, _v : VectRPtr; _isubs : integer);

const ro : coordin = (0,0,0);

var hWave, dWave : double; //Wave height in the float position and its deriv-

ative

 //

 r,v,om : coordin;

 frc, trq : coordin;

begin

 GetPoint(1,1,ro,r); //float coordinates in SC0

 GetVel(1,1,ro,v); //float velocity in SC0

 GetVelAng(1,1,om); //float angular velocity in SC0

 hWave:=Wave(t,r[2]+5,dWave); // Wave height in the float position and its

 // derivative

 frc[1]:=0; frc[2]:=0;

 frc[3]:=(hWave-r[3]+0.3)*600-100*v[3]; //Lifting force and dissipation

 trq[1]:=dWave*50-om[1]*10; // Moment acting on the float

 trq[2]:=0; trq[3]:=0;

//Add forces

 AddForceToBody(1,1,frc,BaseCoordinateSystem);

 AddMomentToBody(1,1,trq,BaseCoordinateSystem);

end;

5.1.7.4. Programming contact surfaces for contact elements

Contact force elements Z-sphere allow the user to create objects with complex contact inter-

action, especially with the help of programming external functions. Simultaneous description of

Z-surface graphic elements is usually used in this case for visualization of contact surfaces. In

this section we consider an example of a controlled wheel robot (Figure 5.6, the object Robot in

the directory Tutorial).

Figure 5.6.

We will discuss the following problems:

 How Z-surfaces for graphic objects and for contact surfaces can be programmed;

 How the image can follow the object motion.

Universal Mechanism 9 5-34 Chapter 5. Programming in UM

Figure 5.7.

For contact force elements of the type Z-sphere are introduced for contacts of the robot

wheels with the ground. The ground contact surface is set by the external function zSurface for

all contact elements (Figure 5.7, left). The scene image is defined in particular by an graphical

element of the type Z-surface with the tame Track (Figure 5.7, center). Two identifiers

xcimage=0, ycimage=0 set the element position relative to SC0 (Figure 5.7, right).

The external Zsurface function, which describe the contact, is presented in the control file by

the following function:

procedure zSurface(_isubs : integer; _x, _y : real_; var _z, _dzx, _dzy :

real_);

var _ : _robotVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 _z := 0;

 _dzx := 0;

 _dzy := 0;

end;

Input parameters are: the Cartesian coordinates _x, _y

Output:

_z –function value;

_dzx – derivative w.r.t the x – coordinate;

_dzy – derivative w.r.t the y – coordinate;

Description of the surface image is defined by the external function Track, which should be

computed in the procedure ZGraphicElementFunctions:

function ZGraphicElementFunctions(_index, _isubs : integer; _p1, _p2 : real_

) : real_;

var _ : _robotVarPtr;

begin

 _ := _PzAll[SubIndx[_isubs]];

 case _index of

 0 : begin

 { Function Track }

 Result := 0;

 end;

Universal Mechanism 9 5-35 Chapter 5. Programming in UM

 end;

end;

We wrote the code in the control file, which supports

o tree mode for the ground surface image, the mode parameter is SurfaceType;

o control the robot motion with the help of the keyboard;

o game simulation for SurfaceType = 1,2.

Here is the code of the control file.

uses

 DGetVars, robotC, _Trobot, Windows;

const

 tindex : array[1..5,1..4] of integer =

 ((1, 1, 1, 1), (*Ahead*)

 (-1,-1,-1,-1), (*Back *)

 (-1, 1,-1, 1), (*Turn left*)

 (1,-1, 1,-1), (*Turn right*)

 (0, 0, 0, 0));(*STOP*)

(*Modes of the motion: *)

 AHEAD = 1;

 BACK = 2;

 LEFT = 3;

 RIGHT = 4;

 STOP = 5;

(*Coordinates of center of the surface image*)

 XYCImage : array[1..2] of double = (0,0);

 var mode : integer; (*current mode of the robot*)

 xcIndex, ycIndex : integer;

 StopCount : integer;

 hT : double;

procedure CalcZSurface(x,y : double; var z,dzx,dzy : double);

var x1,y1 : double;

 h : real_;

begin

 with _PzAllrobot^[1]^ do

 case round(SurfaceType) of

 0 : begin

 z:=0.1*sin(2*x)*cos(3*y);

 dzx:=0.2*cos(2*x)*cos(3*y);

 dzy:=0.3*sin(2*x)*sin(3*y);

 end;

 1 : begin

 x1:=3*sin(x*pi/6);

 y1:=3*sin(y*pi/6);

 h:=sqrt(x1*x1+y1*y1)-2;

 z:=0.1*exp(-sqr(h*4));

 dzx:=-0.8*exp(-sqr(h*4))*h*x1*pi/2*cos(x*pi/6);

 dzy:=-0.8*exp(-sqr(h*4))*h*y1*pi/2*cos(y*pi/6);

 end;

 2 : begin

 z:=0.05*sin(2*x)*cos(3*y);

 dzx:=0.1*cos(2*x)*cos(3*y);

 dzy:=0.15*sin(2*x)*sin(3*y);

 x1:=3*sin(x*pi/6);

 y1:=3*sin(y*pi/6);

 h:=sqrt(x1*x1+y1*y1)-2;

 z:=z+0.1*exp(-sqr(h*4));

Universal Mechanism 9 5-36 Chapter 5. Programming in UM

 dzx:=dzx-0.8*exp(-sqr(h*4))*h*x1*pi/2*cos(x*pi/6);

 dzy:=dzy-0.8*exp(-sqr(h*4))*h*y1*pi/2*cos(y*pi/6);

 end;

 end;

end;

procedure zSurface(_isubs : integer; _x, _y : real_; var _z, _dzx, _dzy :

double);

begin

 CalcZSurface(_x,_y,_z,_dzx,_dzy);

end;

function ZGraphicElementFunctions(_index, _isubs : integer; _p1, _p2 : real_

) : real_;

var h1, h2 : double;

begin

 case _index of

 0 : begin

 { Function Track }

 CalcZSurface(_p1+XYCImage[1],_p2+XYCImage[2],Result,h1,h2);

 end;

 end;

end;

procedure ForceFuncCalc;

 function GetSingleTorque(iwheel : integer; v : real_) : real_;

 begin

 with _PzAll[1]^ do

 Result:=TorqMax*tindex[mode,iwheel]-CResist*v;

 end;

begin

 with _PzAllrobot^[1]^ do begin

 torquefl:=GetSingleTorque(1,_v^[8]);

 torquefr:=GetSingleTorque(2,_v^[10]);

 torquebl:=GetSingleTorque(3,_v^[12]);

 torquebr:=GetSingleTorque(4,_v^[14]);

 end;

end;

 procedure UserCalc;

 const ro : coordin = (0,0,0);

 Step = 0.5;

 var key : integer;

 r : coordin;

 i : integer;

 changeFlag : boolean;

 begin

 key:=WhatDo;

 WhatDo:=NOTHING;

 case CurrEvent of

 FORCESCALC_MESSAGE : begin

 try

 ForceFuncCalc(t, _x, _v, _isubs);

 except

 WhatDo := -1;

 end;

 end;

 INTEGR_BEGIN : begin

 Randomize;

 hT:=5;

 mode:=AHEAD;

Universal Mechanism 9 5-37 Chapter 5. Programming in UM

 StopCount:=0;

 end;

 INTEGR_PROCESS : if (t>20) or (_PzAll[1].SurfaceType=0) then

 case key of

 VK_UP : mode:=AHEAD;

 VK_DOWN : mode:=BACK;

 VK_LEFT : mode:=LEFT;

 VK_RIGHT : mode:=RIGHT;

 ord('s') : if (StopCount<2) or (_PzAll[1].SurfaceType=0) then begin

 inc(StopCount);

 mode:=stop;

 end;

 end;

 FirstInit_Message : begin

 GetElementIndexByName(eltIdentifier, 'xcimage',xcIndex,i);

 GetElementIndexByName(eltIdentifier, 'ycimage',ycIndex,i);

 end;

 StepEnd_Message : begin

 if ((t<20) and (t>hT)) and not (_PzAll[1].SurfaceType=0) then begin

 mode:=Random(3)+1;

 hT:=hT+2;

 end;

 GetPoint(1,1,ro,r);

 changeFlag:=false;

 for i:=1 to 2 do

 if r[i]-XYCImage[i]>Step then begin

 XYCImage[i]:=XYCImage[i]+Step;

 changeFlag:=true;

 end else

 if XYCImage[i]-r[i]>Step then begin

 XYCImage[i]:=XYCImage[i]-Step;

 changeFlag:=true;

 end;

 if changeFlag then begin

 SetIdentifierValue(xcIndex,1,XYCImage[1]);

 SetIdentifierValue(ycIndex,1,XYCImage[2]);

 RefreshElement(eltGO,3,1);

 end;

 end;

 IntegrEnd_Message : begin

 XYCImage[1] := 0;

 XYCImage[2] := 0;

 SetIdentifierValue(xcIndex,1,0);

 SetIdentifierValue(ycIndex,1,0);

 RefreshElement(eltGO,3,1);

 end;

 end;

 end;

end.

Usage of the keyboard for control of a wheel robot is discussed in the lesson Wheel robot.

Here we discuss other procedures.

The global variable XYCImage is used for movement of the ground image according to the

robot motion.

 XYCImage : array[1..2] of double = (0,0);

The first element of this array corresponds to the x coordinate, the second one – y. Values of

these coordinates coincides with the values of identifiers xcimage, ycimage (Figure 5.7, right).

Some additional global variables:

xcIndex, ycIndex – indiced of identifiers xcimage, ycimage;

Universal Mechanism 9 5-38 Chapter 5. Programming in UM

StopCount – counter of stop modes is used in the game;

hT – time moment, the robot control is switched off if t<Th, the variable is used in the game.

The procedure CalcZSurface computes the contact surface (the ground). This procedure is

called from the two function ZgraphicElementFunctions and zSurface. In this manner we

achieve the coincidence the ground image and the contact surface. Note, that elements of the ar-

ray XYCImage are added to the parameters p1,p2 to shift the image according to the robot mo-

tion:

 CalcZSurface(_p1+XYCImage[1],_p2+XYCImage[2],Result,h1,h2);

The following data are determined in the procedure UserCalc

o indices of identifiers xcimage, ycimage, the message FirstInit_Message;

o position of the center of the ground image XYCImage, the message

StepEnd_Message; changes are made if the distance between the robot and the sur-

face center along the x or y axis is greater than Step=0.5. If coordinates are changed,

the new values for the identifiers xcimage, ycimage are set (the procedure SetIdenti-

fierValue), and the corresponding GO is refreshed (the procedure RefreshElement).

The message IntegrEnd_Message is used for setting initial position if the ground image.

The animation window camera follows the robot motion. To assign this mode, move the

mouse cursor to the robot body image, click the right mouse button and select the command Fol-

low the body Body in the pop up menu.

The game corresponds to the identifier value SurfaceType=1,2. With the help of the key-

board keys ←↑→↓, S (stop) you should bring the robot inside the initial circle (marked with the

red flag) and stop it there. First 20 seconds the robot control is turned off and the robot moves in

a random manner. The S (stop) button is available two times a game. To make the game more

difficult, decrease the coefficient of friction (the identifier ffr) and/or increase the driving torque

(the identifier torqmax).

Universal Mechanism 9 5-39 Chapter 5. Programming in UM

5.1.8. Debugging control file in Delphi

The way to use Delphi for debugging the Control file is shown.

Firstly, generate equations of motion of your model. Do not forget to set Pascal as an output

language. Run Delphi and open there the project umtask64.dpr from the [ModelName]\Pascal.

Open as well the Control file. It is named as Cl[ModelName].pas. It is necessary to set up the

following options.

 Project options

Use the menu command Project | Options… and click the Directories | Conditionals tab.

 Input ‘..\[ModelName]’ in the Output directory field. Otherwise the output *.dll will be

created in the project directory ‘..\[ModelName]\Pascal.

 Input path to com directory, which is included in the UM installation, in the field Search

Path. For example, ‘..\Program Files\UM Software Lab\um30\com’.

Using such options (see Figure 5.8) you are ready to try to compile the project. If it is neces-

sary, fix arisen errors and compile the project again. After successful compiling you put break-

points to interested code positions and set up run options.

Run options

Use the menu command Run | Parameters… and choose the Local tab.

 Input path to the UM Simulation program (UmSimul.exe) in the field Host Application,

for example ‘C:\Program Files\UM Software Lab\UM90\bin\UmSimul.exe’. Host Applica-

tion is the application that calls *.dll and uses its functions. In our case with UM Host Ap-

plication is the simulation module and *.dll is the compiled dll with equations of motion.

 Input path to model directory (..\[ModelName]) in the Parameters field. It leads that simu-

lation module loads the model right after start (see Figure 5.9).

Use the menu command Run | Run to run the project. You are ready to debug the Control

file.

Universal Mechanism 9 5-40 Chapter 5. Programming in UM

Figure 5.8.

Figure 5.9.

Universal Mechanism 9 5-41 Chapter 5. Programming in UM

5.2. Code implementation of functionals

Program implementations of functionals of table processor (see 4.2.6) are situated in DLL

files in Plugins directory. Some standard functionals (min, max, rms, integral etc.) are collected

in standard.dll. Some additional especial functionals are collected in railway.dll.

When simulation module starts Plugins directory is scanned and all functionals from DLL

files are loaded.

Thus, development of new functionals can be realized by users. It needs just to copy a new

DLL with new functionals to Plugins directory and they will be available when simulation mod-

ule starts next time. Plugins directory can contain arbitrarily many DLL files. Every export pro-

cedure in DLL file is considered as a functional. The name of procedure is the name of function-

al in table processor window. All export procedures in DLL files in Plugins directory must be

certain type. That type is described in {UM Data}\com\plugin.pas:

TFunctional = procedure(

 X, Y : umPointer;

 N : umInteger;

var Value : umDouble;

var Success: boolean

); cdecl;

{ Arrays of points }

{ Pointers to array of umDouble }

{ Number of elements in X and Y arrays }

{ Return value }

{ If the function succeeds return true,}

{ else return false}

It is not allowed to include any incompatible export procedures to these DLL files. Example

of implementation of functionals is situated in ..\plugins\standard.dpr.

The following example illustrates implementation of Example_Min functional.

(***)

(* Example library of functionals *)

(* Copyright (c) 2001 UM software lab *)

(* *)

(* Table of functionals: *)

(* *)

(* Example_Min *)

(***)

library example;

uses

 UmTypes,

 Plugin;

type

 TUmDoubleArray = array [0..65535] of umDouble;

 TUmDoubleArrayPtr = ^TUmDoubleArray;

 procedure Example_Min(X, Y: umPointer;

 N: umInteger;

 var Value: umDouble;

 var Success: boolean); cdecl; export;

 var aY: TUmDoubleArrayPtr;

 i: integer;

 begin

 Value:=0; Success:=true;

 if N>0 then begin

 aY:=Y;

 Value:=aY[0];

 for i:=1 to N-1 do

 if aY[i]<Value then Value:=aY[i];

Universal Mechanism 9 5-42 Chapter 5. Programming in UM

 end else Success:=false;

 end;

exports

 Example_Min;

end.

For successful compilation it is necessary that files umtypes.pas and plugins.pas from

..\com directory must be on search path.

The following example illustrates implementation of Ampl functional using Visual C++

6.0.

extern "C"

void Ampl(double* x, double* y, int n, double& value, bool& success)

{

 int i,j;

 double min = y[0];

 double max = y[0];

 if (n > 0)

 for (i = 1; i < n; i++)

 for (j = i; j < n - 1; j++)

 {

 if (y[i] < min)

 min = y[i];

 if (y[i] > max)

 max = y[i];

 }

 value = (max - min)*0.5;

 success = true;

}

It is necessary to include def-file with definitions of exported functions in

the project:

LIBRARY "FuncC"

DESCRIPTION 'FuncC Dynamic Link Library'

EXPORTS

 Ampl;

Universal Mechanism 9 5-43 Chapter 5. Programming in UM

5.3. Creating and using external libraries

External libraries are usually used for including into Universal Mechanism various mathe-

matical models of forces that are impossible to describe with the help of the built-in force ele-

ments. Such a method is an alternative to programming in the control file and has the following

distinctions.

 To develop your own external library with a mathematical model you can use any software

environment and any program language that support creating Dynamic-Linked Libraries

(DLL).

 You do not have to learn all the features concerning programming in a UM control file.

 You can include earlier developed external libraries to your UM model without any pro-

gramming at all.

Generally simulation of dynamics of mechanical systems with connecting external libraries

supposes the following steps.

 Creation of a mathematical model and its implementation as a DLL code according to regu-

lations described below.

 Connection of the developed DLL with a UM model with the help of Wizard of external

libraries, see UM Simulation | Tools menu command.

 Simulation of dynamics of a mechanical system.

External libraries have list of input and output signals, as well as list of its parameters. Dur-

ing the binding external library and UM model, external library input signals are connected with

UM variables, that usually describe kinematical performances. Output signals are connected with

UM parameters that usually parameterize forces and torques acting on a mechanical system.

Universal Mechanism

External library

Inputs Outputs

Figure 5.10.

Universal Mechanism 9 5-44 Chapter 5. Programming in UM

5.3.1. Matlab/Simulink interface

Wizard of external library is also used for import models developed in Matlab/Simulink.

More detailed information concerning importing Matlab/Simulink models into Universal Mecha-

nism you can find in the part “Getting Started Using Universal Mechanism: Matlab/Simulink

interface” of UM User’s Manual. The last version of this part is available for downloading here:

www.universalmechanism.com/download/90/eng/gs_um_control.pdf.

Note. You can use your own external libraries in UM models and connect them with the

help of Wizard of external libraries if only UM Control/User-defined rou-

tines tool is available in your UM configuration. Import Matlab/Simulink models

are supported by UM Control/Matlab Import tool.

5.3.2. Declaration of procedures

Temples of an external library in C and Pascal languages are situated in the following direc-

tory: {UM Data}\samples\tutorial\extlibrary\templates.

UM distributive includes the sample DLL that simulates linear spring. You can find the sam-

ple model in {UM Data}\samples\tutorial\extlibrary\extlibspring directory. Source codes are lo-

cated here: {UM Data}\samples\tutorial\extlibrary\source.

Let us consider functions that should be included into an external library.

Note. Return integer parameter status is the exit code in many procedures considered

below. Return value of 0 means no errors occurred, non-zero exit code means that

some errors occurred.

Note. To read procedure declarations in C++ please note the following type declara-

tions:

 typedef double* PDouble;

 typedef wchar_t* WChar;

Note. Symbolic output parameters (model name, names of input and output signals,

names of parameters) should be treated as UNICODE strings. Please note, that

starting from DELPHI 2009, PChar type is equal to PWideChar (UNICODE-

compatible). Earlier DELPHI versions consider PChar as PAnsiChar.

Note. The calling convention cdecl is used for all functions (procedures).

EXT_Initialize

Delphi/Pascal:

procedure EXT_Initialize(var status: Integer); cdecl;

С++:

void _cdecl EXT_Initialize(int& status)

http://www.universalmechanism.com/download/90/eng/gs_um_control.pdf
../samples/tutorial/extlibrary/templates
../SAMPLES/TUTORIAL/extlibrary/extlibspring/input.dat
../samples/tutorial/extlibrary/source

Universal Mechanism 9 5-45 Chapter 5. Programming in UM

Initialization procedure. Here should be placed memory allocation, initialization of local var-

iables, file opening and so on. Runs every time when simulation process in UM Simulation

starts.

EXT_Terminate

Delphi/Pascal:

procedure EXT_Terminate(var status: Integer); cdecl;

С++:

void _cdecl EXT_Terminate(int& status)

Occurs before unloading the library. Should do close operations: memory release, closing

files and so on.

EXT_GetModelName

Delphi/Pascal:

procedure EXT_GetModelName(name: PChar; var status: Integer); cdecl;

С++:

void _cdecl EXT_GetModelName(PChar name, int& status)

Returns model name (no more than 255 chars) that is shown in the user interface. Memory is

allocated on the side of the calling code. The procedure should not allocate any memory for

name inside.

EXT_GetNumU

Delphi/Pascal:

procedure EXT_GetNumU(var num: integer; var status: Integer); cdecl;

С++:

void _cdecl EXT_GetNumU(int& num, int& status)

Returns count of the input signals of the library.

EXT_GetUName

Delphi/Pascal:

procedure EXT_GetUName(i: integer; name: PChar; var status:

Integer); cdecl;

С++:

void _cdecl EXT_GetUName(int i, PChar name, int& status)

Universal Mechanism 9 5-46 Chapter 5. Programming in UM

Returns name of the input signal with i index, no more than 255 chars, uses 0-based index.

Memory is allocated on the side of the calling code. Should not allocate any memory for name

inside.

EXT_GetNumY

Delphi/Pascal:

procedure EXT_GetNumY(var num: integer; var status: Integer); cdecl;

С++:

void _cdecl EXT_GetNumY(int &num, int& status)

Returns count of the output signals of the library.

EXT_GetYName

Delphi/Pascal:

procedure EXT_GetYName(i: integer; name: PChar;

var status: Integer); cdecl;

С++:

void _cdecl EXT_GetYName(int i, PChar name, int& status)

Returns name of the output signal with i index, no more than 255 chars, uses 0-based index.

Memory is allocated on the side of the calling code. Should not allocate any memory for name

inside.

EXT_GetY

Delphi/Pascal:

procedure EXT_GetY(time: double; U, X, Y: PDouble;

var status: integer); cdecl;

С++:

void _cdecl EXT_GetY(double time, PDouble U, PDouble X, PDouble Y, int& sta-

tus)

It is the basic computation procedure. Having current process time (time) and current values

of input signals (U) it calculates vector of output signals (Y). Memory for U, X and Y is allocat-

ed on the side of the calling code. U and Y are the pointers to first elements of the corresponding

arrays. X is an array of state variables (reserved for the future use).

EXT_GetNumParameters

Universal Mechanism 9 5-47 Chapter 5. Programming in UM

Delphi/Pascal:

procedure EXT_GetNumParameters(var num: integer;

var status: Integer); cdecl;

С++:

void _cdecl EXT_GetNumParameters(int& num, int& status)

Returns count of parameters of a model.

EXT_GetParameters

Delphi/Pascal:

procedure EXT_GetParameters(value: PDouble; var status:

integer); cdecl;

С++:

void _cdecl EXT_GetParameters(PDouble value, int& status)

Returns array of parameters of the model. Value is a pointer to the first element of the array

of parameters. Memory is allocated on the side of the calling code. The procedure should not al-

locate any memory for value inside.

EXT_GetParameterName

Delphi/Pascal:

procedure EXT_GetParameterName(i: integer; name: PChar;

var status: Integer); cdecl;

С++:

void _cdecl EXT_GetParameterName(int i, PChar name, int& status)

Returns name of the parameter with i index, no more than 255 chars, uses 0-based index.

Memory is allocated on the side of the calling code. The procedure should not allocate any

memory for name inside.

EXT_SetParameters

Delphi/Pascal:

procedure EXT_SetParameters(numpara: integer; para: PDouble;

var status: integer); cdecl;

С++:

void _cdecl EXT_SetParameters(int numpara, PDouble para, int& status)

Universal Mechanism 9 5-48 Chapter 5. Programming in UM

Sets values of parameters of the model. Para is the pointer to the first element of the array of

parameters. Memory is allocated on the side of the calling code. Procedure should not allocate

any memory for value inside.

EXT_StepConfirmed

Delphi/Pascal:

procedure EXT_StepConfirmed; cdecl;

С++:

void _cdecl EXT_StepConfirmed()

The procedure is used in the case if the external library has a built-in solver. Otherwise might

be empty. Program package “Universal Mechanism” uses numerical methods with variable step

size and automatic accuracy control. Hence some steps of a numerical method might be can-

celled and divided into several smaller ones to achieve the preset accuracy of the solution. If a

step of the numerical method finishes successfully then right after calling EXT_GetY the

EXT_StepConfirmed is called, otherwise several calling the EXT_GetY procedure go on one

after another.

Universal Mechanism 9 5-49 Chapter 5. Programming in UM

5.3.3. Features of compiling external libraries

Developers of external libraries should care that all functions (procedures) listed above

should be declared as exporting in DLL and names of exporting functions should not be decorat-

ed. Decorated names are modified (in our case by compiler) names of functions that include in-

formation about types of arguments and results right in the name of function.

5.3.3.1. Compiling external libraries using C/C++

Please note that Microsoft Visual C++ and Microsoft Visual Studio decorate exporting func-

tion names by default. It is recommended to use DEF-file to control exporting functions and their

names, see example in {UM Data}\SAMPLES\TUTORIAL\extlibrary\source\c directory.

To use DEF-file working in Microsoft Visual Studio simply copy that sample file to the pro-

ject directory, add it into your project and set Configuration properties | Linker | Input |

Module Definition File to <Your DEF-file name>.def, as it is shown in the Figure 5.11.

Figure 5.11. Project settings in MS Visual C++ 2008

../samples/tutorial/extlibrary/source/c

Universal Mechanism 9 5-50 Chapter 5. Programming in UM

Contents of the DEF-file:

EXPORTS

 EXT_Initialize

 EXT_Terminate

 EXT_GetModelName

 EXT_GetNumU

 EXT_GetUName

 EXT_GetNumY

 EXT_GetYName

 EXT_GetY

 EXT_GetNumParameters

 EXT_GetParameters

 EXT_GetParameterName

 EXT_SetParameters

 EXT_StepConfirmed

Please note that the way how to define exporting functions and provide non-decorated func-

tion names depends on used C/C++ compiler. The way for MS Visual C++ is shown above. Us-

ing other compilers you probably should use declaration of functions like extern "C" and/or

__declspec(dllexport) as it is shown below:

extern "C" __declspec(dllexport) void _cdecl EXT_Initialize(int& status);

extern "C" __declspec(dllexport) void _cdecl EXT_GetModelName(WChar name,

int& status);

5.3.3.2. Compiling external libraries using Pascal

To define a list of exporting procedures you should use Exports clause, see

{UM Data}\SAMPLES\TUTORIAL\extlibrary\source\pascal\UMLinearSpring.dpr for de-

tails. Typical Exports clause for UM external library is shown below.

...

Exports

 EXT_Initialize,

 EXT_Terminate,

 EXT_GetModelName,

 EXT_GetNumU,

 EXT_GetUName,

 EXT_GetNumY,

 EXT_GetYName,

 EXT_GetY,

 EXT_GetNumParameters,

 EXT_GetParameters,

 EXT_GetParameterName,

 EXT_SetParameters,

 EXT_StepConfirmed;

By default Delphi (Pascal) compiler does not decorate names of functions so it is not neces-

sary to worry about that.

../SAMPLES/TUTORIAL/extlibrary/source/pascal

Universal Mechanism 9 5-51 Chapter 5. Programming in UM

5.3.3.3. Troubleshooting

In the case of errors during loading DLL into UM before contacting the technical support

make sure that

 your UM configuration includes UM User-defined Routines tool from UM Control mod-

ule, use UM Simulation | Help | About… menu command;

 your DLL and executable umsimul.exe [UM Simulation] have same Win32/Win64 platform

(32/64 bit), note that UM will not be able to load DLL of different platform and

 DLL has all necessary exporting functions and names of these functions are not decorated.

You can check the list of exporting functions and their names with the following utilities:

 dumpbin.exe from Microsoft Visual Studio package;

 tdump.exe from Borland Developer Studio / Embarcadero RAD Studio package;

 freeware utility DLL Export Viewer,

description: www.nirsoft.net/utils/dll_export_viewer.html,

link to download: www.nirsoft.net/utils/dllexp.zip.

Figure 5.12. List of exporting functions by DLL Export Viewer utility

http://www.nirsoft.net/utils/dll_export_viewer.html
http://www.nirsoft.net/utils/dllexp.zip

Universal Mechanism 9 5-52 Chapter 5. Programming in UM

5.3.4. Including external libraries into UM models

There are two approaches to include external library into a UM model. The first one is the

most common approach consists in using Wizard of external libraries, see UM Simulation

program. The second one consists in using scalar forces of the Library (DLL) type, see

UM Input program. Principles of developing DLLs are the same in both cases, see Sect. 5.3.2.

"Declaration of procedures", p. 5-44. There are differences in only approaches of including ex-

ternal libraries into UM models.

5.3.4.1. Wizard of external libraries

Connection of external libraries is fulfilled in UM Simulation program, see Tools / External

library interface menu item. Wizard of external libraries opens, see Figure 5.13. You can see

list of external libraries in left part of the window and settings of the selected library in the right

part.

To assign a variable to an input signal of the external library it is necessary to create the var-

iable in the Wizard of variables and then simply drag the variable to the necessary input signal

and drop it there using the common Drag-and-Drop technology, see Figure 5.13. You can drag

the variable from the Wizard of variables, List of variables or Graphical window. So any var-

iable that could be created in the Wizard of variables can be assigned to input signal of external

library.

Output signals of external libraries are usually assigned to parameters of the model. There-

fore regardless of the fact that external libraries are connected to a UM model in UM Simulation

program only you should create corresponding force elements and parameterize them in the step

of preparing data in UM Input program.

Figure 5.13. Wizard of external libraries

List of

external

libraries

Universal Mechanism 9 5-53 Chapter 5. Programming in UM

To attach an output signal of an external library to a model parameter double click on the

necessary item to open the dialog window, see Figure 5.14, where you can select the model pa-

rameter. Some of output signals have a test/proving sense. In this case you may not to attach

them to model parameters but simply create corresponding variables in the Wizard of variables

| Ext.(ernal) lib.(raries) and plot them in graphical windows.

Figure 5.14. Attaching output values of an external library to UM model parameter

5.3.4.2. Scalar force of Library (DLL) type

Calculation of scalar (bipolar and joint) forces of the Library (DLL) type is also fulfilled in

the external libraries. There are following differences between external libraries for scalar forces

of the Library (DLL) type and for using via Wizard of external libraries.

 External library which is intended to be used as a scalar force of the Library (DLL) type

should has three input signals (x, v, t) and one output signal, where x and v are coordinate

and its time derivative for joint forces and are length of the element and its time derivative

for bipolar forces. t is current time. External libraries which are intended to be used via

Wizard of external libraries may have arbitrary number of input and output signals.

 Description external libraries for scalar forces of the Library (DLL) type is implemented in

UM Input program, Wizard of external libraries works in UM Simulation program.

 Ready-to-use DLLs for scalar forces of the Library (DLL) type should be placed in the

{UM Data}\lib\bfrc folder. External libraries that are attached via Wizard of external li-

braries might be placed anywhere.

Note. From point of view of computation efforts it is recommended that the external

libraries that model joint or bipolar forces should be included into UM model as

scalar forces of the Library (DLL) type instead using Wizard of external librar-

ies.

Universal Mechanism 9 5-54 Chapter 5. Programming in UM

5.3.4.3. Simultaneous connection of several libraries

Generally with the help of Wizard of external libraries you can load an arbitrary count of

external libraries. For example, if a model of some mechanical system includes several identical

force elements described with the help of a single external library then you should add this li-

brary in the Wizard of external libraries so many times as identical force elements are in the

model.

Using simultaneous connection please note the following features. During loading several

copies of the same *.dll file its data area remains the same, in other words, several copies of the

library uses the same data segment. So if procedures, implemented in a library, change values of

global variables and then use them for subsequent calculations, then several such interfaces will

work and rewrite the same global variables. It finally leads to incorrect functioning of the exter-

nal library.

Thus you can use the same DLL file for several interfaces if only EXT_GetY procedure for

calculating output signals uses just input signals and model parameters without using global var-

iables. Otherwise it is recommended to simply copy DLL file as many times as many interfaces

you need.

Let us consider the following example. Let the library.dll realizes mathematical model of a

force element that after each step saves some data in global variables to use them later during the

next step. If we need to add, for example, four such force elements in our model we simple may

copy the library.dll as library1.dll, library2.dll, library3.dll and library4.dll and then use them

via the Wizard of external libraries or scalar forces of the Library (DLL) type.

Universal Mechanism 9 5-55 Chapter 5. Programming in UM

5.3.5. Creating variables for input and output signals

Please note that with the help of the Wizard of variables you can create so called constant-

variables (see Figure 5.15) as well as time-function-variable and identifier-variable

(see Figure 5.16 and Figure 5.17 correspondingly).

Figure 5.15. Constant-variable

Figure 5.16, Figure 5.17 show how to create variables for identifiers (parameters) with the

help of the Wizard of variables. Then these variables will be used in the Expression tab for

creating time-functions as variables.

Figure 5.16. Identifier-variable (A and omega)

Universal Mechanism 9 5-56 Chapter 5. Programming in UM

Figure 5.17. Time-function-variable A*sin(omega*t)

You can create variables that reflect input and output signals of external libraries with the

help of the Wizard of variables, see Ext.(ernal) lib.(rary). It helps create necessary variables for

plotting in a graphical window quickly. For example, during debugging external library or carry-

ing out research.

Please see Sect. “4.3.2. Wizard of variables” of the UM User’s Manual for more detailed in-

formation.

5.3.6. Cascading external libraries

Cascading is a technique when output signals of one external library are assigned to input

signals of other libraries. It let the user a possibility to create, for example, elements of electric

or hydraulic circuits as separate external libraries and then connect them into some circuits.

Using cascading do not forget that output signals will be assigned to input signals with delay

in one step size of a numerical method. Moreover at initial time (t=0), when output signals are

not yet defined, such input elements will be set to zero. So, values of output signals, obtained at

step i of a numerical method, will be given to input ones on step i+1.

Universal Mechanism 9 5-57 Chapter 5. Programming in UM

5.3.7. Example of using external libraries

Let us consider an example of creating the external library that defines a mathematical model

of a linear spring. Considered here mathematical model is a simplified one and takes into ac-

count linear displacements only, angular displacements are ignored.

Please find a model of the mechanical system that is considered in this section in

{UM Data}\SAMPLES\TUTORIAL\extlibrary\extlibspring directory, see Figure 5.18. Source

codes in C and Pascal are in {UM Data}\SAMPLES\TUTORIAL\extlibrary\source directory, see

umlinearspring.dpr and umlinearspring.cpp. Let us not to explain in details all the features of

their implementation. Examples are very simple and obvious for anybody who familiar with pro-

gramming.

Figure 5.18. View of the model

Let us consider some features of description of this model. Run UM Input program and load

the model from the {UM Data}\SAMPLES\TUTORIAL\extlibrary\extlibspring directory.

Firstly note that the bipolar force FictitiousSpring is introduced into the model. This force

has zero parameters and introduced to visualize the spring only. Force itself will be calculated in

the external library.

Secondly note that the SpringForce of T-Force type is also introduced into the model. Pro-

jections of this force on X, Y and Z axes are described with the help of ExtCalcFx, ExtCalcFy

and ExtCalcFz parameters correspondingly. Output signals (in fact, calculated forces) from the

external library will be assigned to these parameters of the model.

Now please run the UM Simulation program and load the same model. Window of the Wiz-

ard of external libraries is shown in Figure 5.13. Please note that deformations of the spring

along each axis should be assigned to input signals of the external library. Deformations along X

and Y axes are equal to position of the body in SC0. To calculate a spring deformation along Z

axis it needs to consider the length of the unloaded spring (0.3 m). How to create necessary vari-

ables with the help of the Wizard of variables are shown in Figure 5.19, Figure 5.20.

../SAMPLES/TUTORIAL/extlibrary/extlibspring
../SAMPLES/TUTORIAL/extlibrary/source
../samples/tutorial/extlibrary/extlibspring

Universal Mechanism 9 5-58 Chapter 5. Programming in UM

Figure 5.19. Coordinates of the center mass of the body in projection on X and Y axis

Figure 5.20. Spring deformation in Z direction

