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2. Modeling mechanical systems 

Consider a physical pendulum i.e. a rigid body, which has a horizontal rotational axis not 

passing through its center of mass. It is a simple example of a mechanical system. Anybody 

could imagine the motion of the pendulum and suppose that the pendulum would swing if initial-

ly it were not in equilibrium. However, far not everyone can write down ‘off-hand’ the equation 

of motion and solve it. Anyway, even junior students of university natural faculties can do it. If 

the air resistance force is to be taken into account, the analysis can only be carried out by senior 

students. Moreover, if we attach a second body to the first one, even a professional mathemati-

cian cannot obtain the exact analytical solution (because it does not exist!). What then can be 

said about systems containing dozens, hundreds, and thousands of bodies? 

In such cases, applying the following numerical methods for modeling is most effective: 

 automatic generation of equations of motion; 

 numerical analysis of equations of motion; 

 treatment of the results of the equations analysis and their representation in a convenient 

form. 

There are a lot of concepts for the equations analysis. So choosing one or another is, by far, 

determined by the nature of the analyzed system. This might be the numerical integration of the 

equations of an object in a complex spatial motion (e.g., for a robot manipulator). For a multi-

body system (MBS) whose bodies move slightly about a fixed in space position the determina-

tion of the natural frequencies and modes is often necessary. A considerable amount of infor-

mation one could obtain through solving the problem of motion stability in the neighborhood of 

the equilibrium position or a steady motion. 

The representation of the equation analysis results is most convenient when using computer 

graphics. So it is possible to simulate motion and to display time-varying charts. 

In the course of the system analysis, the designer often has to change its configuration and 

parameters (for example, the sizes of the bodies or any coefficients in the expressions for forces). 

These changes must be organized by the software as simply as possible. Once the configuration 

is changed, the equations of motion usually change as well. If the two-body physical pendulum is 

to be transformed into a three-body one, the equations will change totally. Here it matters how 

fast the equations are generated. The operational changing of parameters of an MBS is possible 

without generating the equations anew if they are derived in a fully symbolic form and the corre-

sponding parameters take part in them as identifiers (data parameterization). 

The program package UM has been designed for solving such and many other problems. 
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2.1.  Rigid body systems 

 

Belt conveyor 

    

Double wishbone suspension of a vehicle (left); truck suspension with hydraulic actuators (right) 
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Mooring platform and its anchor system 

 

Expander 

 

Tracked vehicle 
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Freight railway vehicles 
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Electric locomotive EP200 

 

Train model 

 

Coach 

Figure 2.1. Multibody systems 

The objects to be dealt with by UM can be rigid and flexible body systems. The bodies of a 

system may or may not be connected with each other by joints and force elements. In particular, 

bodies may be mass points (Figure 2.1). 

The motion of an MBS is studied with respect to the basic body, by which an inertial system 

of coordinates (SC) is meant. Often such a system can with enough accuracy be identified with 

the surface of the Earth. The basic body is considered fixed and therefore is not included in the 
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analyzed MBS, although takes an active part in the description of the system. The basic SC is 

denoted SC0. Usually, dividing a compound object into bodies is no problem. For example, a 

two-body physical pendulum consists of two bodies, whereas the Puma manipulator – of four. 

Sometimes, a deformable body, e.g., an elastic beam, can be represented as an MBS. For this 

representation to be valid the beam has to be divided into several rigid bodies. The separate bod-

ies are connected with each other by massless elastic elements. 

 

 x0 

 y0 

 z0 

 O 

 x1 

 y1 

 z1 

 x2 

 y2 
 z2 

 O2 

 O1 

 

Figure 2.2. Double pendulum 

To describe the motion of an MBS in terms of mathematics the right Cartesian system of co-

ordinates is associated with each of the bodies. The origin can be located in any point of the body 

and the axes are fixed to it. Generally speaking, the orientation of the axes of the body-fixed SC 

may be chosen arbitrarily, but the equations of motion will be easier if the axes are the principal 

axes of inertia. Here and below such systems of coordinates are referred to as the body-fixed sys-

tems of coordinates and denote them as SC [the index of the body], e.g., SC1 is the system of 

coordinates fixed to body 1. In a particular case, when a body has axes of symmetry, the axes of 

the body-fixed SC are usually directed along the axes of symmetry. 

For example, consider a model of the two-body pendulum, Figure 2.2, which consists of two 

homogenous rods connected by a rotational joint and attached by a joint to the immovable sup-

port. The axes of the joints are parallel and the motion of the MBS therefore is 2D, however in 

UM all coordinate systems are assumed to be three-dimensional. The basic SC0 Ox0y0z0 has 

the origin in O, which coincides with the center of the joint. The body-fixed systems of coordi-

nate 𝑂1𝑥1𝑦1𝑧1 and 𝑂2𝑥2𝑦2𝑧2 originate in the centers of mass of the corresponding bodies, 

whereas the axes are directed along their axes of symmetry. 
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2.2.  Joints 

2.2.1. Connectivity of systems and definition of a joint  

It is assumed that the modeled MBS satisfies a connectivity condition, i.e. each body of the 

system is connected by a joint at least with one other body or the basic body (SC0), and there 

exists a path from each body to SC0. This condition is very important and is automatically 

checked by UM. By what joint and with what body is an unrestrained body moving in space 

connected? And does it make sense at all to introduce joints for free bodies? It appears to be 

clear that to describe the position of a body in space it is sufficient to know the position of the 

body-fixed SC relative to the basic SC0. In terms of mathematics, for that it is sufficient to set 

the position of the origin and the orientation of the body-fixed SC with respect to the basic SC0, 

expressing them through certain variables called coordinates. For this purpose, UM uses the de-

pendencies between, on the one hand, coordinates and, on the other, the radius vector of the 

body-fixed SC origin and the directional cosine matrix (the matrix of rotation). The term ‘joint’ 

is intended to describe the position of one body relative to another. To say ‘describe the position 

of a body relative to the basic SC0 in terms of coordinates’ means in UM ‘introduce a joint be-

tween the given body and the basic one’.  

Joints making it possible to describe the position of one body relative to another by means of 

introducing the joint coordinates are below denoted as generalized¸ rotational, translational, 

quaternion and 6 d.o.f. joints. UM uses another type of joints constraining the relative motion of 

bodies and which have certain problems in introducing the joint coordinates. In many systems 

the constraint represented by a massless rigid rod with joints at the ends is not a generalized joint 

either although it is also available with UM. 

Certainly, generalized, quaternion and 6 d.o.f. joints can be introduced for any pair of bodies 

both kinematically connected and not. If any two bodies are connected by a joint in the usual 

sense – e.g., rotational or prismatic – its representation in UM assumes that the position of one 

body will be described relative to the other, namely the position of one body-fixed SC will be 

described relative to the other body-fixed SC. The joint coordinates, i.e. the variables setting this 

position, are introduced. The complete set of coordinates for the object as a whole is the result of 

unification of the local joint coordinates. Such a description takes place in the data input pro-

grams and is greatly automated. However, joints to connect each body with the basic one may 

not exist, although it is sufficient that there exists for each body a chain of bodies from this one 

to the basic. It is the urgent condition of connectivity of the modeled MBS 

According to the condition of connectivity, it is also required that joints in the chain be not 

arbitrary but of certain types. Currently the following generalized types of joints are available: 

 rotational; 

 translation; 

 six d.o.f. joint; 

 generalized; 

 internal body joint, based on 6 d.o.g. 

 quaternion; 

 massless rigid rod constraint; 
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 mates; 

 convel (constant velocity) joint. 

Rotational, translation, six degree of freedom and generalized joint belong to a certain group. 

They have identical internal representation and describe kinematical pairs with various transla-

tion and rotational d.o.f. (from zero to six). Rotational, translation and six degree of freedom 

joint can be described with the help of generalized joint. 

Quaternion joint is often used for introduction of coordinates for a free body and for descrip-

tion spherical joint. 

Massless rod, mates and convel joint do not introduce new coordinates. They are just kine-

matical constraints. 

 

Joints of types  

 rotational; 

 translational; 

 6 degrees of freedom 

have internal UM representation as generalized joints. Conversion of joints to generalized type is 

available in the UM Input. This tool can be used to create additional degrees of freedom, to de-

scribe joint forces, to parameterize inclination of axis and so on. See Chapter 3 of user’s manual 

for additional information. 

Example.  User’s manual, Chapter 7, Sect. Joint type conversion. Parameterization of axis 

inclination. 

03_um_data_input_program.pdf
07_um_simulation_examples.pdf
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2.2.2. Description of joints 

2.2.2.1. Translational and rotational joints 

 

Figure 2.3. Joint with 1 d.o.f. 

Translational and rotational joints allow describing one d.o.f. joints. Every joint of this type 

introduces one local coordinate (linear or angular). A sketch of such joints is given in Figure 2.3. 

There are following parameters: 

 joint vector e, described by its projections on SC1 and SC2 (𝑒𝑥
1, 𝑒𝑦

1, 𝑒𝑧
1), (𝑒𝑥

2, 𝑒𝑦
2, 𝑒𝑧

2). Vector 

cannot be zero. 

 coordinates of two joint points (connected with body 1 and body 2) situated on joint axis 

(𝜌1𝑥
1 , 𝜌1𝑦

1 , 𝜌1𝑧
1 ), (𝜌2𝑥

2 , 𝜌2𝑦
2 , 𝜌2𝑧

2 ). 

 Some additional parameters, shift along the joint axis 𝑥𝑎 and/or turning around the joint axis 

𝜑𝑎. 

Vector (𝑒𝑥
1, 𝑒𝑦

1, 𝑒𝑧
1) and point A (𝜌1𝑥

1 , 𝜌1𝑦
1 , 𝜌1𝑧

1 ) describe the joint axis position relative body 1, 

and vector (𝑒𝑥
2, 𝑒𝑦

2, 𝑒𝑧
2) and point B (𝜌2𝑥

2 , 𝜌2𝑦
2 , 𝜌2𝑧

2 ) describe the joint axis position relative body 2. 

If 𝑥𝑎 = 0 then points A and B are coincide (have the same coordinate in SC0). 

The 𝑥𝑎  parameter in the case of a translational joint and the 𝜑𝑎 parameter in the case of a ro-

tational joint are used for describing the relative positions of the bodies when the coordinate is 

zero. 

Positive rotation corresponds to the right-hand screw rule. 

There might be introduced joint force in a translational joint and joint torque in a rotational 

joint. 

Local coordinates for both joint types might be described as explicit time functions. In that 

case joint coordinates is not included to the list of coordinates of object. For example, angle of 

rotation might be describes as 𝜑(𝑡) = 𝜔𝑡, where  is the angular velocity. 
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Examples 

   

Figure 2.4. Rotational and translational joints 

Here the rotational joint (Figure 2.4 left) is described by the following parameters:  

(𝑒𝑥
1, 𝑒𝑦

1, 𝑒𝑧
1) = (1,0,0),   (𝑒𝑥

2, 𝑒𝑦
2, 𝑒𝑧

2) = (1,0,0), 

(𝜌1𝑥
1 , 𝜌1𝑦

1 , 𝜌1𝑧
1 ) = (0, 𝑎, 0),   (𝜌2𝑥

2 , 𝜌2𝑦
2 , 𝜌2𝑧

2 ) = (0,−𝑏, 0), 

𝑥𝑎 = 𝜑𝑎 = 0, 

 

 

And here the translational joint (Figure 2.4 right) is described by the following parameters: 

(𝑒𝑥
1, 𝑒𝑦

1, 𝑒𝑧
1) = (0,1,0),   (𝑒𝑥

2, 𝑒𝑦
2, 𝑒𝑧

2) = (0,1,0), 

(𝜌1𝑥
1 , 𝜌1𝑦

1 , 𝜌1𝑧
1 ) = (𝜌2𝑥

2 , 𝜌2𝑦
2 , 𝜌2𝑧

2 ) = (0,0,0), 

𝑥𝑎 = 𝜑𝑎 = 0. 
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2.2.2.2. Six d.o.f. joint 

Joints of such a type are often used to introduce kinematical pairs with various numbers of 

rotational and translation d.o.f. Consider two bodies: 1 and 2 (see Figure 2.5). Origins of body-

fixed SC are located in points O1 and O2. Introduce two additional SC: SC1A and SC2B with its 

origins in some points A and B correspondently. The joint introduces coordinates, which de-

scribe the position of SC2B relative to SC1A.  

 

Figure 2.5. 

By default the joint has six d.o.f.: three shifts SC2B relative to SC1A (x, y, z) and three angles 

of SC2B orientation relative to SC1A (𝑎1, 𝑎2, 𝑎3). In this case body 2 moves freely and joint does 

not introduce any constraints on relative movement. 

There are 12 ways of introduction of orientation angles accordingly sequence of rotations 

around axes (x-1, y-2, z-3): 

 Euler (3,1,3); 

 (3,2,3); 

 (2,1,2); 

 (2,3,2); 

 (1,2,1); 

 (1,3,1); 

 Cardan (1,2,3); 

 (1,3,2); 

 (2,1,3); 

 (2,3,1); 

 (3,1,2); 

 (3,2,1). 

Any of these six d.o.f. might be locked. It means that the d.o.f. will not be introduced in a 

model. A lot of various kinematical pairs might be described in this way. 

 

The following parameters are necessary for description the six d.o.f. joint: 

O1 
O1 

A 

B 
1 2 
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 coordinates of points A in SC1 and B in SC2 (𝜌1𝑥
1 , 𝜌1𝑦

1 , 𝜌1𝑧
1 ), (𝜌2𝑥

2 , 𝜌2𝑦
2 , 𝜌2𝑧

2 ) as well as orien-

tation of SC1A and SC2B relative to SC1 and SC2; 

 type of angle orientation; 

 enabled/disabled d.o.f. 

 

Consider some examples. 

 Spherical joint (see Figure 2.5). Vectors 𝜌1, 𝜌2 describe the position of the center of the joint 

in SC1 and SC2, all translation d.o.f. are disabled. Here the spherical joint (Figure 2.6) is 

described by the following parameters: 𝜌1 = 0, 𝜌2 = (0,0 − 𝑎), type of orientation angles is 

(3,1,3). 

 

Figure 2.6. Spherical joint 

 

Figure 2.7. Hooke (universal) joint 

 Hook joint with two d.o.f. (see Figure 2.2, Figure 2.7). All translations and one of rotational 

coordinate are disabled. Vectors 𝜌1, 𝜌2 describe the position of the center of the joint in SC1 

and SC2. For the joint in Figure 2.2, Figure 2.7:  𝜌1 = (0, 𝑎, 0), 𝜌1 = (0, 𝑎, 0) type of orien-

tation angles is (1,2,3), the angle 𝑎2 is turned off (or the type is (1,3,2) and 𝑎3 is turned off).  

 One d.o.f. joints. Let us consider examples in Figure 2.4. For a rotational joint we have 

(𝜌1𝑥
1 𝜌1𝑦

1 𝜌1𝑧
1 ) = (0, 𝑎, 0), (𝜌2𝑥

2 𝜌2𝑦
2 𝜌2𝑧

2 ) = (0, 𝑏, 0), all translations are disabled and two rota-
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tional ones, too. For example, these are angles 𝑎2, 𝑎3 for the orientation angles of type 

(1,2,3). For a translational joint 𝜌1 = 𝜌2 = 0, all the angles are disabled and translations x, 

z, too. 

Remark.  It is well known, that there are singular orientations of SC2 relative to SC1 for any 

type of three orientation angles. In the singular orientations, the numerical values 

of the orientation angles cannot be found uniquely, which results in failure of the 

simulation of motion. The first six types (axes of the first and the last rotations 

have the same indices) are singular at 𝑎2 = 0𝜋. The rest six types have singulari-

ties when 𝑎2 = ±𝜋/2. This fact must be taken into account for spherical joints, if 

SC2 can have an arbitrary orientation in respect to SC1 while simulation of mo-

tion. For example, do not use orientation angles being singular at 𝑎2 = 0, 𝜋, if 

axes of SC2 are parallel to those of SC1 at begin of simulation (when t=0). Gener-

ally, in case when a free body can have an arbitrary spatial orientation at run-

time, use the quaternion joint instead of six d.o.f. one. 
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2.2.2.3. Generalized joint 

Most of kinematical pairs can be modeled with the help of joints described above. However, 

there are a variety of kinematical pairs, which cannot be described with the help of those joints. 

Here is a list of examples, which is far from being complete: 

 a Cardan joint, whose rotation axes are not perpendicular; or whose first axis is not parallel 

to some of axes of SC1; or whose second axis is not parallel to some of axes of SC2; 

 joints with more than one d.o.f. having joint forces and/or torques, corresponding some of 

d.o.f.; 

 joints with more than one d.o.f. realizing predefined motion (some or all of d.o.f. are time-

dependent functions). 

All these examples, and also all the types of joints above, can be implemented using the gen-

eralized joint. Mathematical model of the joint is discussed in the scientific manual. 

So, the generalized joint, by definition, is a constraint having an arbitrary number of both 

translational and rotational degrees of freedom (from 0 to 6). The transition from SC1, connected 

with the first body, to SC2, connected with the second one, can be described as a sequence of el-

ementary transformations (ET) at an arbitrary relative position of the bodies. Each ET is either a 

translation along or a rotation about a certain direction. Let us introduce concepts of a vector e 

and a parameter s of an ET. The unit vector e defines the direction of the translation or rotation 

(depending on type of the ET). The parameter s (i.e. the value of the translation or rotation) is 

either a constant value or a certain time-dependent function, or a variable value, which must be 

calculated at simulation time. In the latter case, the parameter s is a local generalized joint coor-

dinate. 

Thus, there are six types of ET: 

 tc – translation with a constant parameter; 

 tv – translation with a variable parameter; 

 tt – translation whose parameter is a known time function; 

 rc – rotation with a constant parameter; 

 rv – rotation with a variable parameter; 

 rt – rotation whose parameter is a known time function. 

                      

Let us consider some examples of generalized joints. 

a) A rotational kinematic pair (Figure 2.2, Figure 2.4 left). It is described by three ETs: 

𝑇1 = {𝑡𝑐, 𝑒𝑦, 𝑎}, 𝑇2 = {𝑟𝑣, 𝑒𝑥, 𝜑}, 𝑇3 = {𝑡𝑐, 𝑒𝑦, 𝑏}, 𝑞𝑖𝑗 = [𝜑].  

Before starting the explanation of the expressions, it seems appropriate to make clear the in-

troduced designations. T1, T2, T3 stand for the consecutive ETs. Then in brackets, the type of ET, 

the vector e and the parameter s are given. For all the types of ETs, except constant translation tc, 

the vector e must be unit. For tc there are no parameters since the value of translation is directly 

included in the vector of transformation. The column qij contains the list of local joint coordi-

nates. 

The first ET translates SC1 by a along axis y. The second ET corresponds to the rotation by 

  about x. The final ET (transition along axis y) makes SC1 coincide with SC2.  
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b) A prismatic joint (Figure 2.4 right) in a simplest case can be described by a single ET  

𝑇1 = {𝑡𝑣, 𝑒 = (0,1,0), 𝑠 = 𝑦}, 𝑞𝑖𝑗 = [𝑠];  

s is the coordinate which determines the translation of body 2 with respect to body 1. 

c) A Cardan joint (Figure 2.2, Figure 2.7) is a kinematical pair having two rotational d.o.f. In 

the case sketched in the figure it is set by four ETs: 

𝑇1 = {𝑡𝑐, 𝑒 = (0, 𝑎, 0)}, 

𝑇2 = {𝑟𝑣, 𝑒 = (1,0,0), 𝑠 = 𝛼1}, 

𝑇3 = {𝑟𝑣, 𝑒 = (0,0,1), 𝑠 = 𝛼2}, 

𝑇4 = {𝑡𝑐, 𝑒 = (0, 𝑏, 0)}, 

𝑞𝑖𝑗 = [𝛼1, 𝛼2]
𝑇 . 

 

T1 translates SC1 by a along the axis y and the axis x occupies the position of the first axis of 

rotation. The second ET (the rotation by 1 about x) brings the axis z into coincidence with the 

axis of the second rotation. These are followed by the rotation by 2, which makes the axes of 

the SC parallel to those of SC2. The final ET – the translation along y – results in the coincidence 

with SC2. 

Note.  Every next ET is done relative to the new position of SC, in which the preceding 

ETs resulted. As a rule, ETs cannot be exchanged, thus, in other words, ETs are 

not commutative.  

  

a)                                                                              b) 

Figure 2.8. Two joints with the same set of ETs but with different their sequence 

E.g., if, in the case of the Cardan joint shown in Figure 2.7, one exchanges the second and 

third ETs, it will result in a Cardan joint with a totally different kinematic structure (Figure 2.8 

a). If one exchanges the first and second ETs, the resulting pair will not be a Cardan joint at all 

but a joint with two d.o.f. (Figure 2.8b). This pair is also available with UM, although it by no 

means corresponds to Figure 2.3. These examples show that the concept of common joint is far 

not trivial and while describing it there may appear serious and hardly detectable errors. 

d) A spherical joint. Bodies connected by spherical joints may have arbitrary relative orienta-

tion. In the example of a Lagrange top shown in Figure 2.6 (a symmetrical body connected with 
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the support by a spherical joint whose center lies on the axis of symmetry), the transfer from SCI 

to SCJ is carried out in two stages. First, rotate SCI so that its orientation coincide with SCJ and 

then make a translation along the axis z. Bringing the two systems of coordinates into coinci-

dence might be obtained by rotating about three axes. So three angles of orientation are intro-

duced. To introduce the three angles one can use any of the twelve allowable combinations of the 

axes of rotation. However, in the case of a Lagrange top Euler angles are conventional. Thus, 

here the spherical joint is described by the following four ETs: 

𝑇1 = {𝑟𝑣, 𝑒 = (0,0,1), 𝑠 = 𝜓}, 

𝑇2 = {𝑟𝑣, 𝑒 = (1,0,0), 𝑠 = 𝜗}, 

𝑇3 = {𝑟𝑣, 𝑒 = (0,0,1), 𝑠 = 𝜑}, 

𝑇4 = {𝑡𝑐, 𝑒 = (0,0, 𝑎)}, 

𝑞𝑖𝑗 = [𝜓, 𝜗, 𝜑]𝑇 

 

And the final example is a free body in space. It is a joint with six d.o.f. and six ETs: three 

variable translations along the axes x,y,z and three variable rotations about the axes z,x,z – Euler 

angles, or x,y,z – Cardan angles, or, at last, any series of rotations about three arbitrary axes (one 

has to bear in mind, however, that the axes of two consecutive rotations must not be parallel). 

For instance, for Cardan angles: 

𝑇1 = {𝑡𝑣, 𝑒 = (1,0,0), 𝑠 = 𝑥}, 

𝑇2 = {𝑡𝑣, 𝑒 = (0,1,0), 𝑠 = 𝑦}, 

𝑇3 = {𝑡𝑣, 𝑒 = (0,0,1), 𝑠 = 𝑧}, 

𝑇4 = {𝑟𝑣, 𝑒 = (1,0,0), 𝑠 = 𝛼}, 

𝑇5 = {𝑟𝑣, 𝑒 = (0,1,0), 𝑠 = 𝛽}, 

𝑇6 = {𝑟𝑣, 𝑒 = (0,0,1), 𝑠 = 𝛾}, 

𝑞𝑖𝑗 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]𝑇 . 

 

When solving various problems of kinematics and inverse problems of control ETs whose 

parameters are explicit time functions are frequently used. It means that how the angle of rota-

tion or the parameter of translation changes with time is known a priori. E.g., while solving the 

kinematic problem of the crank-and-slide mechanism the motion of the input link – the crank – is 

given. Here the angle of rotation in the joint connecting the crank with the fixed support changes 

in a known manner, for example, it can be linear with respect to time. 

Remark.  The generalized joint with three rotational d.o.f. can be singular at some relative 

orientations of the bodies in pair (see remark in Sect. 2.2.2.2. "Six d.o.f. joint", 

p. 2-14). In case if the bodies can be arbitrary oriented while moving, values of 

the orientation angles may become (almost) singular. This results in a strong de-

celeration or a total break of simulation of motion due to automatic decreasing 

the integration step. Because of this reason, in this case it is recommended to use 

the quaternion joint, which does not have any singularities. 
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2.2.2.4. Quaternion joint 

The quaternion joint is similar to that with 6 d.o.f. The most significant difference consists in 

coordinates, which define the orientation of SC2B relatively to SC1A. In the case of a quaternion 

joint we have four coordinates (a quaternion) 𝑞0, 𝑞1, 𝑞2, 𝑞3. As it is known, the quaternion cannot 

be singular, but it satisfies the identity 

𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1  

at any moment. 

Translational degrees of freedom can be turned off similar to the 6 d.o.f. joint, but rotational 

degrees of freedom are always presented. 

The quaternion joint is mainly used for introducing coordinates of freely moved bodies, as 

well as for introduction of spherical joints. 

Remark.  If a spherical joint is cut (Sect. 2.2.3. "System graph. Closed kinematical loops" 

p. 2-27), its description by a quaternion joint is the most effective way from the 

numerical point of view. 
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2.2.2.5. Internal body joint 

Internal body joint is often used by introducing 6 degrees of freedom to a body, which can 

move freely. Orientation angles in these case correspond to the sequence of rotations 1,2,3 (Car-

dan angle).  

A large weight is automatically assigned to the internal body be the program. Due to this fact, 

if a joint or a chain of joints setting position of the given body relative to the Base0 is introduced, 

the internal joint is cut and automatically removed. This property of internal joints is frequently 

used in subsystems in particularly in specialized UM modules such as UM Caterpillar and UM 

Train3D. 

Consider an example. In the UM Caterpillar module the model of a track is automatically 

generated as an included subsystem. All elements in the subsystem, which must be connected 

with the hull, are connected with a fictitious body. The fictitious body has six d.o.f. introduced 

by an internal joint. In the model of a tracked vehicle, the model includes a hull with 6 d.o.f. and 

two subsystems – tracks. Fictitious bodies from each of the subsystems are rigidly fixed relative 

to the hull by special zero d.o.f. joints. In this case the internal joints of fictitious bodies are cut 

and automatically removed. 
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2.2.2.6. Weightless rod constraint 

This type of constraint corresponds to a weightless rod with spherical joints at the end points 

connecting two bodies. There is no friction in the joints. To describe the constraint it is enough to 

set the coordinates of the attachment points of the rod in the body-fixed SC of both bodies and a 

nonzero length of the rod. The length of the rod may be either constant or an explicit time func-

tion, which greatly expands the area of its application to analyze controlled systems. E.g., an ac-

tuator may be considered a massless rod with the length varying somehow in a number of prob-

lems where its inertial parameters are insignificant. 
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2.2.2.7. Mates 

Mates are constraints, which limit relative position and motion of pairs of bodies. The notion 

‘mate’ is introduced in CAD programs and appears in UM in connection with development inter-

faces to CAD programs such as SolidWorks, Autodesk Inventor, KOMPAS. As a rule, mates 

appear in UM models as a result of converting CAD assemblies into UM objects when some 

constraint cannot be converted automatically in joints described above. 

Mates realized in UM a described by the following data. 

1. Type of mate 

 Coincident 

 Concentric 

 Parallel 

 Distance 

 Angle 

2. Type and parameters of manifolds connected with each of the in the pair of bodies 

 Point. Described by coordinates in the body-fixed SC. 

 Line. Described by coordinates of one point on the line and a unit vector along it in the 

body-fixed SC. 

 Plane. Described by coordinates of one point on the plane and a normal to the plane in 

the body-fixed SC. 

3. Parameters, which depend on the mate type. 

 Distance. Distance between the manifolds should be specified. 

 Angle. Value of angle between the manifold must be set. 

 

There exist limitations on type of manifolds for some types of mates. For instance, manifolds 

cannot be points for mates “coincident”, “parallel” и “angle”. 

 

Example. Mate of the “coincident” type with points as manifolds for both of the bodies, i.e. 

the coincidence of a point of the first body with another point of the second body, introduces the 

same constraints on relative motion of the bodies like a spherical joint. The main difference con-

sists in the fact that if the spherical joint is not cut, it introduced 3 angular degree of freedom de-

fining orientation of the second body relative to the first one. The mate always adds constraint 

equations, 3 equations in the considered case: 

𝑟1 + 𝐴01𝜌1
1 − 𝑟2 − 𝐴02𝜌2

2 = 0.  

Here 𝑟1, 𝑟2 are the radius-vectors of body-fixed system of coordinates, 𝐴01, 𝐴02 are the direct 

cosine matrices of body-fixed SC, 𝜌1
1, 𝜌2

2 are the radius-vectors of coinciding points, which are 

specified in the body-fixed SC. 
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Number of constrain equations for all possible types of mates is specified in the table. 

Type of mate Types of manifolds Number of constraint 

equations 

Coincident point-point 3 

point-line 2 

point-plane 1 

line-line 4 

line-plane 2 

plane-plane 3 

Concentric line-line 4 

Parallel line-line 2 

line-plane 1 

plane-plane 2 

Distance point-point 1 

point-line 1 

line-line 3 

line-plane 2 

plane-plane 3 

Angle line-line 1 

line-plane 1 

plane-plane 1 
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2.2.2.8. Convel joint 

 

Figure 2.9. Scheme of ConVel joint 

A ConVel (constant velocity, CV) joint provide equal angular velocities of a pair of inclined 

shafts. This constraint corresponds to a point-point coincidence mate as well as to equal shaft 

angles of rotation. 

The joint is specified by the coordinates of the joint center A in SC of each of the bodies as 

well as by two unit vectors e1, e2 for shaft axes, Figure 2.9. 

The joint adds four constraint equations. Three of them correspond to coincidence of two 

points A of shafts. The fourth equation provides the equality except for sign of angle of rotation 

of body 2 about vector e2 and the angle of rotation of body 1 about the vector e1. 

Remark.  In fact, the joint does not provide constant angular velocities of shafts. The name 

of the joint reflects its property to keep (nearly) constant velocity of the second 

shaft by the constant angular velocity of the first one, unlike the Hook joint. Be-

sides, angular velocities of shafts are (nearly) equal. 

To make the CV joint model correctly, the user should create a correct kinematic scheme of 

shafts by proper choice of joints and/or force elements.  

 

Figure 2.10. Model configuration with additional rotational joint 

At the beginning consider a model, which does not correct with respect to the CV joint. In 

this model the first shaft is connected with the base by a rotation joint S, Figure 2.10, and 6 d.o.f. 

are introduced for the second shaft relative to SC0. In this model a CV joint reduces the degrees 

O1 

O2 

A e1 

e2 

S 
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of freedom of the second shaft to two rotational d.o.f. relative to shaft 1. In such the model, the 

second shaft does not keep it orientation along the axis e2, and the shaft motion is not correct. 

 

Figure 2.11. Model with two additional rotational joints 

The first variant of the possible models is shown in Figure 2.11. In this model each of two 

shafts is connected with the base by rotational joints S1 and S2. If the joint axes lie exactly on 

straight lines specified by CV joint vectors e1, e2, Figure 2.10, the mechanism works properly. At 

the same time, the second shaft without CV joint has 1 d.o.f. only, and adding the CV joint intro-

duces four constraints. This means, the model has redundant constraint and statically uncertain. 

Reaction joints cannot be computed properly. There are other reasons why this model cannot be 

recommended. For example, if joint axes do not coincide exactly with CV axes e1, e2, the mech-

anism cannot move at all. Most likely, the user gets a message about non-consistent equations of 

motion by the start of simulation. As a rule, this scheme is incorrect if the shafts are connected 

with different bodies, which can move relative to each other. 

 

Figure 2.12. Model with one rotational joint and with one bushing 

The model shown in Figure 2.12 is better than the previous one in many cases. Here we see a 

bushing for the second shaft instead of a joint. The bushing limits shifts of the body in directions 

perpendicular to the shaft axis. A special force of the ‘bushing’ type as well as a generalized lin-

ear force element can be used for the bushing model. In an alternative model the bushings are 

introduced for both shafts instead of rotational joints. The user must take care of the directions in 

which the bushings are blocks shaft displacements. 

 

Example. See the User’s Manual, Chapter 7, Sect. Convel joint.  

  

S1 

S2 

S1 

07_um_simulation_examples.pdf
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2.2.3. System graph. Closed kinematical loops 

An important stage in dealing with complex mechanical systems is the analysis of their struc-

ture, which can be carried out with the help of the system graph. Its vertices correspond to the 

bodies including the basic one; its ribs correspond to the joints. The above conditions of connec-

tivity being met, the graph of the system is connected, i.e. there is at least one path between any 

two of its vertices. That the graph satisfies the connectivity condition is the corollary of the con-

dition that there is a chain for each body that connects it with body 0 (base, SC0). If there is but 

one path between any pair of vertices, the graph is a tree, and in this case the corresponding me-

chanical system has a tree structure. If at least one pair of bodies between which there exists 

more than one path can be found, the graph of the system has cycles and the MBS contains 

closed kinematical loops. Then it is clear that there are bodies in the systems, which are connect-

ed with body 0 by more than one chain. 

A majority of mechanisms has closed loops. To analyze systems with closed loops is more 

difficult than if the system is a tree. The most effective strategy here consists in cutting a few 

joints so that a tree could be obtained. The number of cut joints equals that of independent cycles 

in the graph. It is easy to see that almost always to choose which joints to cut is ambiguous and 

there is a chance of picking them out best or optimally considering this or that criterion, e.g., to 

facilitate the equations of motion, reduce their size, decrease the number of arithmetic operations 

in the numerical modeling of motion, etc. In UM the choice of such joints is made automatically 

through the analysis of the graph. The optimal cutting is based on the Dijkstra algorithm for ob-

taining paths of minimal weight from the root of the graph to each vertex. 

As was noted in the section devoted to system connectivity (Sect. 1.3.1), to generate the 

equations in a symbolic form requires that the joints in the chain between the basic body and an-

ybody of the system must introduce coordinates. Thus, a rod joints must be cut. The condition of 

connectivity, for this reason, requires sometimes the introduction of additional joints with six 

d.o.f. for a spatial problem and three d.o.f. for a 2D one. 

Remark 1.  The user can have an influence on the choice of joints to be cut by means of large 

weight coefficient for the corresponding joint in the closed loop. 

Remark 2.  Cut joints with 6 degrees of freedom are conditionally removed, i.e. the corre-

sponding coordinates are not included in the set of object coordinates. 
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2.3. Equations of motion 

Equations of motion of a multibody system have the following form of differential-algebraic 

equations:  

𝑀(𝑞, 𝑡)�̈� + 𝑘(𝑞, �̇�, 𝑡) = 𝒬(𝑞, �̇�, 𝑡) + 𝐺𝑇(𝑞)𝜆, 

ℎ(𝑞, 𝑝) = 0, 

(2.1) 

where q is the column of basic coordinates of the system, p is the column of auxiliary coordi-

nates (local joint coordinates in cut joints; M is the mass matrix, k,Q columns of generalized in-

ertia and applied forces; λ are Lagrange multipliers corresponding to reactions in cut joints; the 

second equation in Eq. (2.1) is the algebraic constraint equation corresponding closure condi-

tions of cut joints. Matrix G is the Jacobian matrix of the constraint equations after elimination of 

auxiliary coordinates. 

UM generates the equations of motion in both a symbolic and in numeric-iterative form. 

Symbolic generation of equations makes often simulation faster.  

Consider expressions generated by UM for each simple object. Let 𝑞 = {𝑞, 𝑝} be the set of 

coordinates of the object. It contains the local joint coordinates for normal and fictitious joints 

(except the cut normal joints. UM generates in a symbolic form the following kinematic rela-

tions: 

 The radius-vectors of mass centers and rotation matrices for each body, 

𝑟𝑖
0 = 𝑟𝑖

0(𝑞, 𝑡),    𝐴𝑖0 = 𝐴𝑖0(𝑞, 𝑡),  

 The velocities of mass centers and angular velocities for each body, 

𝑣𝑖
0 = 𝐷𝑖

0�̇� + 𝑣′𝑖
0
,   𝜔𝑖

𝑖 = 𝐵𝑖
𝑖�̇� + 𝜔′𝑖

𝑖
,  

 Note that all quantities relating to body rotations are given in the body-fixed SC, whereas all 

translational quantities are set in the SC0; 

 The matrices 𝐷𝑖
0 and 𝐵𝑖

𝑖 included in the expressions for the velocity of the center mass and 

angular velocities (Jacobean matrices); 

 The vectors 𝑎′𝑖
0
 and 𝜀′𝑖

𝑖
 of the terms of accelerations and angular accelerations not depend-

ing on �̈�, 

𝑎𝑖
0 = 𝐷𝑖

0�̈� + 𝑎′𝑖
0
,   𝜀𝑖

𝑖 = 𝐵𝑖
𝑖�̈� + 𝜀′𝑖

𝑖
;  

 Constraint equations for the cut joints 

ℎ𝑘(𝑞, 𝑝𝑘) = 0.  

 Elements of the matrices QkM ,,  of the motion equations (2.1). 
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2.4. Theoretical foundations for solving constraint equations 

Theory of numerical solving differential-algebraic equations asserts that the numeric solvers 

are sensitive to errors in initial conditions. This means that the initial values of coordinates and 

their first time derivative should satisfy the constraint equations as exactly as it is possible. To 

clarify the problem it is good to consider the procedure of forming and solving the constraint 

equations. 

Let q0 , p0 be the current values of generalized (coordinates in joints, which belongs to the 

object tree, i.e. they are not cut) and auxiliary coordinates, respectively. These values, as a rule, 

do not satisfy the constraint equation 

ℎ(𝑞, 𝑝) = 0,  

which corresponds to the closure conditions for the cut joints. The corrections q, p must be set 

so that new coordinate values satisfies the equation 

ℎ(𝑞0 + Δ𝑞, 𝑝0 + Δ𝑝) = 0. (2.2) 

The Newton-Raphson iterations are used by UM for solving the nonlinear Eq.(2.2). The fol-

lowing equations are solved at every the iteration: 

𝐻𝑞(𝑞
𝑘, 𝑝𝑘)Δ𝑞𝑘+1 + 𝐻𝑝(𝑞

𝑘, 𝑝𝑘)Δ𝑝𝑘+1 = −ℎ(𝑞𝑘, 𝑝𝑘), 

𝑞𝑘+1 = 𝑞𝑘 + ∆𝑞𝑘+1, 𝑝𝑘+1 = 𝑝𝑘 + ∆𝑝𝑘+1, 𝑘 = 0,1… 

𝑞0 = 𝑞0, 𝑝
0 = 𝑝0. 

 

Here Hq, Hp are the Jacobian matrices of the vector h. The k-th iteration is done according to 

the following pattern. The constraint equations  

𝐻𝑞,𝑖(𝑞
𝑘, 𝑝𝑖

𝑘)∆𝑞𝑘+1 + 𝐻𝑝,𝑖(𝑞
𝑘, 𝑝𝑖

𝑘)∆𝑝𝑖
𝑘+1 = −ℎ(𝑞𝑘, 𝑝𝑖

𝑘), (2.3) 

are generated for each cut joint j. This equation is in the generalized coordinates and local auxil-

iary variables (i.e. the local coordinates in the cut joint). The auxiliary variables ∆𝑝𝑖
𝑘+1 are elimi-

nated from Eq.(2.3) with the help of the Gauss elimination procedure and the following two 

equations are obtained:  

∆𝑝𝑖
𝑘+1 = 𝑃𝑖∆𝑞

𝑘+1 + 𝛿𝑝𝑖
𝑘, (2.4) 

𝐺𝑖
𝑘∆𝑞𝑘+1 = −𝑔𝑖

𝑘. (2.5) 

Then Eqs. (2.5) for separate cut joints are added to the matrix equation  

𝐺𝑘∆𝑞𝑘+1 = −𝑔𝑘, (2.6) 

whose solution are obtained using the Gauss elimination procedure based on the row pivoting. 

The correction values for the pivotal elements (independent variables) are set to zero and non-

zero values of the dependent variables are calculated according to Eq. (2.6). The obtained solu-

tion ∆𝑞𝑘+1 is substituted into Eqs. (2.4) for evaluations of the auxiliary variables. If the norm of 

the calculated correction vector is less that the prescribed small tolerance , the iteration is 

stopped and the program exits from the procedure otherwise the next iteration is executed. 

Note that according to this algorithm, an arbitrary solution to the equations is obtained in 

agreement with the constraint equations. Fixing coordinates (e.g., when it is necessary to obtain 

the configuration of a four bar mechanism for a certain angle of crank rotation, Figure 2.13), can 
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be done by the user but only for generalized coordinates (not auxiliary!). The fixed coordinate 

remains unchanged during the above iterations. 

The process of automatically solving the constraint equations can fail. If it does not converge 

after 20 iterations, you receive the corresponding message and can either continue the process or 

quit.  

Consider some situations when iterations do not converge. 

 

 The constraint equations have no solution 

 

Figure 2.13. Four bar mechanism 

That means the mechanism has not been assembled correctly. For instance, consider a planar 

mechanism shown in Figure 2.13. If one sets the lengths of bodies 1, 2 and 3 so that their sum is 

less than the distance between the hinges connecting body 1 and 3 to the support, the mechanism 

cannot be assembled. This occurs, too, when the axes of rotation of the joints are not parallel.  

UM cannot see if your mechanism can or cannot be assembled. Although it sends a message 

notifying that iterations do not converge. Of course, you have to find out the reason why this 

happened and make changes in the object description using the Input Module or correcting the 

values of some identifiers. 

 

 Constraint equations have no solution for the given values of the fixed coordinates. 

If you have fixed some coordinates (see previous sections) so that their values cannot be 

changed during iterations, sometimes the solution cannot be found. It can be for two reasons. 

First, the set of fixed coordinates contains dependent coordinates. For example, if you have fixed 

any two coordinates for the mechanism shown in Figure 2.13, the solution cannot be found be-

cause the mechanism has one d.o.f. and any two coordinates are dependent. Second, if the cur-

rent value of a fixed coordinate is outside of its interval. This occurs (for the case of mechanism 

in Figure 2.13) if you have fixed the angle 1 and the distance between points A and B is greater 

than the sum of the lengths of bodies 2 and 3. 

 

 Bad starting approximation 

It is well known that the Newton-Raphson procedure requires a good starting approximation 

q0, p0 for successfully solving non-linear equations. If your current coordinate values are far 

from the desirable solution, the following variants may take place: 

o Iterations do not converge. Try to continue iterations for several times. If the solution 

is not found jet, try to set the start values of coordinates manually. 
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Figure 2.14. 

o UM obtains an undesirable solution. This problem arises due to lack of uniqueness of 

nonlinear constraint equations. One example is given in Figure 2.14 (the dashed line). 

Use a manual choice of coordinates to improve the approximation. 

o For the given values of coordinates q0, p0 the Jacobian matrix of the constraint equa-

tions (2.6) is singular. For the mechanism in Figure 2.14, a singularity of the given 

kind is encountered if the joint between bodies 1 and 2 is cut and the angles in joints 

satisfy 3=0,, 4=1+3. Use a manual choice of coordinates to avoid the singular 

position. 

o The Jacobian matrix Hp,i in Eq. (2.4) is singular for the given values of q0, p0. Use a 

manual choice of coordinates to avoid the singular position. 
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2.5. Force elements 

Forces acting between bodies are generally divided into applied and constraint reactive forc-

es. In their turn, reaction forces are represented by two components: the tangential component 

performing mechanical work during motion (as a rule, these are friction forces) and an ideal – or 

normal – component. If all the constraints in the MBS are ideal, the first component is absent. In 

terms of data input applied forces and the reaction force non–ideal components have the follow-

ing in common: they should be expressed through the variables and parameters of the system. 

However the ideal components of reaction forces are determined by the type of constraint and 

their computation is carried out automatically. 

In UM the following active forces varying in the patterns of their description in the data input 

module, are available: 

 gravity forces; 

 joint forces (for translation, rotational and generalized joints); 

 bipolar forces; 

 scalar torque; 

 generalized linear force elements; 

 contact forces; 

 special forces (gearing, bushing etc.); 

 T-forces; 

 externally formulated forces. 

An applied force may be a function of time, coordinates and their first time derivatives. In 

simpler cases, (e.g., for gravity and generalized linear force element) these functions are auto-

matically generated by the program. However, they are so often quite complicated and the user 

has to write his/her own procedures in a control file or use external libraries. Such forces are re-

ferred to as externally formulated forces. 
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2.5.1. Gravity 

In UM the gravitation field is assumed homogenous. Thus it is only necessary to specify the 

unit vector of the gravity direction. The gravity acceleration is assumed 9.81 m/s
2
. However, the 

user can leave gravitation out of account. The generalized forces corresponding to gravity are 

generated automatically. 
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2.5.2. Joint forces and torques 

One way to set an active force or torque is to introduce these for the corresponding degree of 

freedom. Thus, one models an engine, actuator (transmission) and other systems where dynamic 

effects are insignificant. E.g., in a robot manipulator model the designer has the right not to take 

into account inertial properties of the transmission members and therefore not to solve the dy-

namic problem. So the model is idealized, and the designer assumes that the influence of the 

transmission on the object is reduced to the appearance of driving forces or torques in the kine-

matic pairs. Such force (torque) is directed along the axis of the pair. 

To model such forces in the program the definition of a joint force (torque) for generalized, 

rotational and translational joints is introduced. In the case of a generalized joint, a force (a 

torque) can be introduced for any ET with a variable parameter (i.e. tv or rv, see Sect. 2.2.2.3. 

"Generalized joint" p. 2-17). The force (torque) vector is directed along the axis of ET according 

to the increase of the parameter values. It is assumed that the force is only a function of time, the 

corresponding ET parameter and its time derivative (that is velocity). This limitation is removed 

if the user applies the external description of the force, in other words, if the force computation is 

done while the modeling of motion with the help of a procedure written by the user in a control 

file. 

For a joint with several d.o.f. it is possible to introduce a force for each d.o.f., or for some of 

them. 
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2.5.3. Bipolar forces 

 

Oi 

Oj 
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i j
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Figure 2.15. 

A bipolar force element connects two chosen fixed points of a pair of bodies (attachment 

points Oi, Oj in Figure 2.15). The force acts along the straight line between the points and may 

depend on time t, the distance r between the points and its time derivative 𝑟, 

𝐹 = 𝐹(𝑡, 𝑟, �̇�).  

The force is positive in the repulsion case, for example, it is positive in the case shown in 

Figure 2.15. 

In the UM input program some of the most often met types of the dependencies between the 

bipolar force and the variables are available: a linear function, an analytical expression, a set of 

points etc. Mathematical models for this dependence are described in Sect. 2.5.5. "Types of sca-

lar forces" p. 2-37. 

If the distance r equals zero, the degeneration of the force element occurs (due to the uncer-

tainty of the force direction). Here, the force is assumed to be zero. 

Example. Consider a bipolar force, which models a linear viscoelastic force element with c 

and d parameters as stiffness and damping coefficients. Let the force equals F0 when the length 

of the element is x0 and the velocities vanish. The analytic expression for the force looks like 

𝐹 = 𝐹0 − 𝑐(𝑥 − 𝑥0) − 𝑑𝑣.  
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2.5.4. Scalar torque 

 

Figure 2.16. To the notion of scalar torque 

This type of force element describes torque acting on the second body from the first one/ To 

clarify the model of the torque consider interacting bodies 1 and 2, Figure 2.16. Points O1 and 

O2 are the origins of the body-fixed SC1 and SC2. Let us introduce additional local system of 

coordinates SCA1 and SCB2, rigidly connected with bodies 1 and 2 respectively. Arbitrary 

points A and B are origins of local SC. A scalar torque m depends on orientation of SCB2 rela-

tive to SCA1 and does not depend on their origin positions. Moreover, it is supposed that Z axes 

of SCB2 and SCB1 are nearly parallel, i.e. the angle between these axes is small during mo-

tions of bodies and does not exceed 10 degrees. By these assumptions, let us shift axes of SCB2 

to the origin A. 

 

Figure 2.17. Angle of rotation of the second body relative to the first one 

Let us introduce angle α of rotation of the second body relative to the first one about Z axis 

as an angle between the X-axes of SCB2 and SCA1, Figure 2.17. For simplicity directions of Z 

axes on this figure coincide.  

Scalar torque acting on the second body from the first one is directed along Z axis of SCA1. 

Value of the torque depends on the angle α, its time derivative �̇�, and time t 

𝑚 = 𝑚(𝛼, �̇�, 𝑡).  

Mathematical models for this dependence are described in Sect. 2.5.5. "Types of scalar forc-

es" p. 2-37. 
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Remark 1.  If the second body is connected with the first one by a rotational joint, which axis 

coincides with the Z-axis of SCA1, and Z-axes of SCA1 and SCB2 coincides so 

that the angle α is equal to the joint coordinate, the scalar torque can be equiva-

lently described by a joint torque, see Sect. 2.5.2 "Joint forces and torques" p. 2-

34 

Remark 2.  In the description of the scalar torque, x, v letters are used as identifiers of the 

angle α and its time derivative �̇�. 

2.5.5. Types of scalar forces 

Definition of a bipolar/joint/axle force as well as scalar torque includes its mathematical 

model as a scalar function 𝑓 = 𝑓(𝑥, 𝑣, 𝑡). In the case of a joint force the arguments x, v are the 

joint coordinate and its time derivative, for a bipolar force element they are the element length 

and its time derivative. In case of a scalar torque they represent the relative angle of rotation and 

the corresponding angular velocity. Anyway, t is the current time value. The following types of 

description of the force model are foreseen in UM. 

2.5.5.1. Linear force  

The model corresponds to a linear viscoelastic interaction with a harmonic excitation: 

𝑓 = 𝐹0 − 𝑐(𝑥 − 𝑥0) − 𝑑𝑣 + 𝒬 sin(𝜔𝑡 + 𝛼).  

Here 𝐹0 is the constant component of the force, c, d are the stiffness and damping constants, 

x0 is the value of the coordinate x for zero value of the elastic component, 𝑄,𝜔, 𝑎 are the ampli-

tude, the frequency and the initial phase of the harmonic excitation. 

The element is used for description of linear springs, damping elements, harmonic excitations 

and their combinations 

Adding a new element of this type to a model see in Chapter 3, Sect. Linear force element. 

2.5.5.2. Friction force 

This type of force is mainly used for modeling frictional dampers. The force description in-

cludes two modes: sliding and sticking. In the sliding mode the force satisfies the formula 

𝑓 = 𝐹𝑠𝑔𝑛(𝑣)  

analogously to the Coulomb friction with a constant friction force F, and v as a the sliding veloc-

ity. In the sticking mode, the force model looks like 

𝑓 = 𝑓0 − 𝑐(𝑥 − 𝑥0) − 𝑑𝑣,  

i.e. presents a linear viscoelastic force with the c and d parameters as stiffness and damping coef-

ficients. 

The sliding-sticking transition occurs at the moment when the velocity v changes its sign. At 

this moment the force f and the coordinate x values are stored (the f0 and x0 parameters in the 

formula for the force in the sticking mode). 

03_um_data_input_program.pdf
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The sticking-sliding transition occurs when the force reaches its maximal value 

|𝑓| ≥ 𝛿𝐹,  

where 𝐹0 is the maximal value of static friction force. 

The user should specify the parameters of the model 𝐹, 𝑐, 𝑑, 𝐹0. 

Force value in the sliding state F can be variable; in particular, it can depend on the reaction 

force in joint, see Section 2.5.10 Friction in joints depending on reactions. 

Adding a new element of this type to a model see in Chapter 3, Sect. Friction and elastic-

friction elements. 

2.5.5.3. Elastic-frictional force 

This is one of well-known models of friction, which consists of a dry friction with a linear 

spring in series. An additional damper is usually set in parallel with the spring (Figure 2.18). 

 

Figure 2.18. 

The mathematical model of the element requires the introduction of an auxiliary variable 

𝑥∗ in addition to x, v variables. In a sliding mode the mathematical model includes the following 

differential equations relative to the 𝑥∗ variable: 

−𝑑(𝑣 − �̇�∗) − 𝑐(𝑥 − 𝑥∗) = 𝑠𝑔𝑛�̇�∗ ∙ 𝐹 

𝑓 = 𝑠𝑔𝑛 �̇�∗ ∙ 𝐹 

(2.7) 

Here c, d are the stiffness and damping constants, F is the constant friction force. The equa-

tion corresponds to a condition that the friction force is equal to the sum of the elastic and damp-

ing forces. 

In a sticking the 𝑥∗ variable is constant, and the force is equal to 

𝑓 = −𝑑𝑣 + 𝑐(𝑥∗ − 𝑥)  

Stick-slip transition occurs when  

|𝑓| ≥ 𝛿𝐹,  

where 𝛿 =
𝜇0

𝜇
≥ 1 if the static/dynamic coefficient of friction ratio.  

Slip-stick transition occurs when 

�̇�∗�̇�∗− < 0,  

where �̇�∗− is the value of the velocity �̇�∗ at the previous step of integration process. This condi-

tion corresponds to changing the sliding direction. 

 

Consider a new variable 

03_um_data_input_program.pdf
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𝑦 = 𝑥 − 𝑥∗,  

which corresponds to an elastic deflection of the spring. In a sliding this variable satisfies the 

equation 

�̇� +
𝑐

𝑑
𝑦 = −

1

𝑑
𝑠𝑔𝑛(𝑣 − �̇�) ∙ 𝐹, 

(2.8) 

and the force value produced by the element is 𝑓 = 𝑠𝑔𝑛(𝑣 − �̇�) ∙ 𝐹. In a sticking the equations is 

�̇� = 𝑣, 

𝑓 = −𝑑𝑣 − 𝑐𝑦, 
 

and the slip-stick transition occurs when 

(𝑣 − �̇�)(𝑣− − �̇�−) < 0.  

Note that in this formulation the model of the friction element corresponds to the compliant 

contact model [1]. 

Consider some properties of the variable y. At a sticking its behavior quite analogous to that 

of the variable x, so the most interesting is its value at slipping according to Eq. (2.8). Covert this 

equation to the following form 

�̇� = 𝜆𝑦 = ±∆,  

where 𝜆 =
𝑘

2𝛽
, 𝑘 = √

𝑐

𝑚
  is the frequency of a body with the mass m on a spring with the stiffness 

c; 𝛽 is the damping ratio of critical, ∆=
𝐹

𝑐
  is the deflection of the spring by the friction force F. 

Usually the frequency k is large, and for a reasonable damping (𝛽 < 1) the value of 𝜆 is large< 

and the differential equation is stiff. For example, if 𝑘 = 628 rad/s (100 Hz) and 1.0  then 

𝜆 = 3040. 

If ∆ is constant, the solution of the equation is  

𝑦 = 𝑦𝐹 + 𝑦0(1 − 𝑒
−𝜆𝑡),   𝑦𝐹 = ±

∆

𝜆
.  

with 𝑦(0) = 𝑦0 as an initial condition. If ∆ is variable by virtue of variability of the friction force 

F, it can be shown by the singular perturbation method that the solution in the first approxima-

tion is analogous to the above one. It is a sum of the slow term 𝑦𝐹 and a boundary layer function, 

which tents to zero very fast. The typical behavior of the variable y is shown in Figure 2.19. The 

left figure is obtained for 𝑦0 = 1. In fact, we see here a fast tending the variable to zero. The 

right figure shows the 𝑦(𝑡) dependence for, 𝑦0 = 0 for a process when sliding changes its direc-

tion several times. The variable is nearly constant at sliding and changes rapidly at sticking. Fig-

ures were obtained for the friction ratio δ = 1,2. 
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Figure 2.19. Variable y (elastic deflection) versus time for different initial condition 

Note 1.  ‘Friction’ and ‘elastic-friction’ force show in simulations similar results. The 

‘elastic-friction’ force introduces an additional variable and makes equation of 

motion stiff. So, we recommend using the ‘friction’ force. 

Note 2.  Model of the force contains a first order differential equation, but its internal rep-

resentation is replaced by an equivalent second order differential equation  

                        �̈� +
𝑐

𝑑
�̇� = −

1

𝑑
𝑠𝑔𝑛(𝑣 − �̈�) ∙ 𝐹, 𝑦 = �̇� 

This replacement serves the unification of numerical methods. 

 

Adding a new element of this type to a model see in Chapter 3, Sect. Friction and elastic-

friction elements. 

2.5.5.4. Elastic-frictional force 2 

 

The force element is a spring (𝑐1) in series with a parallel combination of the second spring 

(𝑐2) and a Coulomb friction element. In contrary to the previous two model of the frictional ele-

ment, here the friction force is not constant. Its value depends on a deflection of the spring in 

parallel 𝑐2. 

Consider mathematical model of the element. Let 𝑥1, 𝑥2 be the length of the springs, and  

𝑥2(0) = 0,  𝑥1(0) = 𝑥(0) be initial values of these variables. This means that at start of simula-

tion the second spring 𝑐2 has zero length and this position corresponds to its undeformed state. 

Let 𝐿0 be the length of the spring 𝑐1 in an undeformed state. Then the forces produced by the 

springs can be computed from the expressions 

𝑓1 = −𝑐1∆𝑥1 = −𝑐1(𝑥1 − 𝐿0) = −𝑐1(𝑥 − 𝐿0 − 𝑥2) = −𝑐1(∆𝑥 − 𝑥2), 

𝑓2 = −𝑐2∆𝑥2 = −𝑐2𝑥2. 
 

Here ∆𝑥 = 𝑥 − 𝐿0. 
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As usual, the friction has two models. At sticking we accept a proportionality of the friction 

force to the force produced by the spring 𝑐2 

𝐹𝑓𝑟 = −𝜇𝑠𝑔𝑛(�̇�2)|𝑓2| = −𝜇𝑠𝑔𝑛(�̇�2)|𝑐2𝑥2| = −𝜇𝑠𝑔𝑛(�̇�2)𝑠𝑔𝑛(𝑥2)𝑐2𝑥2  

where 𝜇 is the dynamic coefficient of friction. The 𝑥2 deflection can be computed from equality 

of two forces: the force in the spring 𝑐1 and the sum of friction force and the force produced by 

the spring𝑐2 

𝑓 = 𝑓1 = 𝑓2 + 𝐹𝑓𝑟 ,  

i.e. 

−𝑐1(∆𝑥 − 𝑥2) = −𝑐2𝑥2 − 𝜇𝑠𝑔𝑛(�̇�2)𝑠𝑔𝑛(𝑥2)𝑐2𝑥2,  

and finally 

𝑥2 =
𝑐1∆𝑥

𝑐1 + 𝑐2(1 + 𝜇𝑠𝑔𝑛(�̇�2)𝑠𝑔𝑛(𝑥2))
=

𝑐1∆𝑥

𝑐1 + 𝑐2(1 ± 𝜇)
, 

∆𝑥1 = 𝑥 − 𝑥2. 

 

From the expression for 𝑥2 we obtain that at sliding the variables ∆𝑥 and 𝑥2 have equal signs 

at least for 𝜇 < 1. The force value is 

𝑓 =
𝑐1𝑐2∆𝑥(1 ± 𝜇)

𝑐1 + 𝑐2(1 ± 𝜇)
.  

The estimation 𝑐1 ≫ 𝑐2 often takes place, which yields 

𝑓 ≈ 𝑐2∆𝑥(1 ± 𝜇).  

In such cases the friction coefficient is a good approximation for the “relative (effective) fric-

tion coefficient” according to the estimate 

𝜑 =
𝑓𝑐 − 𝑓𝑠
𝑓𝑐 + 𝑓𝑠

≈ 𝜇,  

where 𝑓𝑐 ≈ 𝑐2∆𝑥(1 + 𝜇),  𝑓𝑐 ≈ 𝑐2∆𝑥(1 − 𝜇) are forces at compression and stretching. 

 

At sticking the deflection 𝑥2 is a constant and the resultant force produced by the element is 

computed from the formula 

𝑓 = 𝑓1 = 𝑐2(∆𝑥 − 𝑥2),  

Finally, slip-stick transition occurs when the velocity 𝑥2̇ changes its sign. The sign of the ve-

locity is estimated on the difference 𝑥2 − 𝑥2
−, where 𝑥2

− is the value of the coordinate at the pre-

vious integration step. Stick-slip transition occurs when 

|𝐹𝑓𝑟| = |𝑓1 − 𝑐2𝑥2| > 𝜇0|𝑐2𝑥2|,  

where 𝜇0 is the static coefficient of friction. 

 

List of parameter of the model: 

𝑐1, 𝑐2 – stiffness, 
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𝜇, 𝜇0 – static and dynamic coefficients of friction, 

𝐿0 – length of element in an undeformed state. 

 

A typical hysteresis (force versus coordinate) as well as coordinate x versus time are shown 

in Figure 2.20. The amplitude of vibrations decreases exponentially like a viscous damper, but 

the element realizes a frequency independent damping like rubber. 

 

Figure 2.20. Force versus coordinate x; coordinate x versus time 

Note 1.  Force element of this type can be used for modeling leaf springs, internal friction 

in rubber elements etc.  

Note 2.  Element is automatically disabled if at least one of the parameters 𝑐1 or 𝑐2 is zero. 

Note 3.  When friction is zero, the element corresponds to two springs in series. 

Note 4.  Bipolar force element degenerates at zero length. If it passes through zero length, 

the simulation results are incorrect.  

Note 5.  Do not set coefficient of friction more than 1. 

Note 6.  Static and dynamic coefficients of friction are usually equal for elements of this 

type. 

Note 7.  At sticking the element has no dissipates. If necessary, add dissipation in parallel 

(Sect. 2.5.5.16. "List of forces" p. 2-56). 

Adding a new element of this type to a model see in Chapter 3, Sect. Elastic-friction ele-

ment 2. 
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2.5.5.5. Stiffness and damping in series and parallel 

     

Figure 2.21. Scheme of the force element 

The scheme of the element includes linear spring and in series linear spring damping in par-

allel (Figure 2.21, left). This element is used, e.g. in the Nishimura model of an air spring. In a 

particular case 𝑐1 = 0 (Figure 2.21, right) the element is a linear spring and damper in series, and 

such elements are used for modeling of dampers, as a part of models of rubber, elastomer, etc.  

Mathematical model of the element is obtained from equality of elastic and viscoelastic forc-

es and includes the following differential equation 

𝑣�̇�1 + 𝑐1𝑥1 = 𝑐(𝑥 − 𝑥0 − 𝑥1) = 𝑐(∆𝑥 − 𝑥1),  

where 𝑥0 is the length of the unloaded element (if 𝑐1 ≠ 0) or the initial value 

𝑥0 = 𝑥|𝑡−0  (if  𝑐1 = 0). 

 

Thus, the element adds a new variable 𝑥1 to the model and the corresponding differential 

equation. If the time constant 

𝑇 =
𝑣

𝑐
  

is small, the differential equation is stiff. In such cases the Park solver with computation of Jaco-

bian matrices is recommended. It is worth to note that if T is small, and the analyzed object mo-

tion is slow, the element is equivalent to a simple linear damping with the same damping con-

stant. 

Note 1.  Model of the force contains a first order differential equation, but its internal rep-

resentation is replaced by an equivalent second order differential equation                          

�̈� +
𝑐 + 𝑐1
𝑣

�̇� =
𝑐

𝑣
∆𝑥, 

This replacement serves the unification of numerical methods. 

Note 2. Usually the initial value of 𝑥1 variable (more accurately, initial for z and �̇�) is zero. 

Adding a new element of this type to a model see in Chapter 3, Sect. Viscoelastic element. 
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2.5.5.6. Nonlinear spring and damper in series 

 

Figure 2.22. Scheme of force element 

Here a generalization of the linear spring and damper in series is considered, when the spring 

and damper characteristics are specified by point curves, Figure 2.22. This element is used in 

cases when one characteristic or both of the characteristics are nonlinear. 

The following recommendations are important. 

1. Increase of the abscissa corresponds to compression of bipolar force element or decrease the 

joint coordinate, Figure 2.23. 

 

Figure 2.23. Example of a damper characteristics 

2. The spring force versus deflection plot as well as damper force versus velocity plot must by 

strongly monotone increasing functions. The plots must pass through the origin (0,0). 

3. Point coordinates can be parameterized by identifiers. Spline or B-spline interpolation can 

be applied. 

4. If abscissa value exceeds the definitional domain during the simulation, the linear approxi-

mation if applied. 

Like in the previous section, the element introduces an additional coordinate 1x  in the model 

as well as an ordinary differential equation, which implicit form is 

𝐹𝑣(�̇�1) + 𝐹𝑥(∆𝑥 − 𝑥1) = 0,  

where 𝐹𝑣 , 𝐹𝑥 are functions specifying the spring and the damper. 

Compression 
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The differential equation is often stiff, and the Park integration method with the use of Jaco-

bian matrices is recommended. It is worth to note that if the spring stiffness is large, and the ana-

lyzed object motion is slow, the element is equivalent to a nonlinear damping. 

2.5.5.7. Pointwise model 

This type of the force requires the description of the 𝑓(𝑥), 𝑓(𝑣) or 𝑓(𝑡) functions in a as a set 

of points. Coordinates of points can be both numbers and expressions. UM uses linear interpola-

tion and extrapolation for calculation of force values in an arbitrary point. Figure 2.24 shows 

some force models, which can be easily realized with the help of this method. Each of the tree 

models requires four points for description. 

 

Figure 2.24. Example of nonlinear pointwise force models 

 

Figure 2.25. Example of indicator diagram 

It is available the description of periodic forces, when the force is specified on one period on-

ly, Figure 2.25. As a rule, periodic forces are used for description of indicator diagrams of en-

gines, compressors and so on. 

Adding a new element of this type to a model see in Chapter 3, Sect. Points (numbers), 

Points (expressions). 
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2.5.5.8. Expression 

The force model is an expression including standard elementary functions. For instance, 

𝑓 = 𝑓0 − 𝑐(𝑥 − 𝑥0) − 𝑑𝑣 + 𝑎 𝑠𝑖𝑛(15𝑡).  

Adding a new element of this type to a model see in Chapter 3, Sect. Data types | Expression 

– explicit function. 

2.5.5.9. Fancher leaf spring 

This type of force is used for simulation of leaf massless springs. The mathematical model of 

the force is the following: 

𝐹𝑖 = 𝐹𝑒𝑛𝑣,𝑖 + (𝐹𝑖−1 − 𝐹𝑒𝑛𝑣,𝑖−1)𝑒
−|∆𝑥𝑖−∆𝑥𝑖−1|/𝛽 , 

𝐹𝑒𝑛𝑣,𝑖 = −𝑐∆𝑥𝑖 − 𝐹𝑓𝑟𝑠𝑖𝑔𝑛{∆𝑥𝑖 − ∆𝑥𝑖−1}, 

𝐹𝑓𝑟 = 𝑓𝑐∆𝑥𝑖, 

∆𝑥 = 𝑥 − 𝑥0. 

 

Here i is the number of the integration step, f is the friction coefficient, c is the stiffness of 

the spring, 𝐹𝑓𝑟 is friction force, 𝛽 is the exponential suspension parameter, 𝑥0 is the height of the 

spring in the undeformed state. Parameters c and f may depend on the spring state: stretched 

(𝑑𝑥 < 0) or compressed (𝑑𝑥 > 0).  

The plot in Figure 2.26a shows an example of free vertical vibration of a body connected 

with the base by the Fancher leaf spring element, β =0.002 m. 

 

a) 
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b) 

Figure 2.26. Typical behavior of the Fancher model 

Note.  The model is unstable for big  values. The recommended interval for this pa-

rameter is 0,001÷0,004. If 𝛽 → 0, the model is similar to the force of kind elastic 

– frictional 2, see Sect. 2.5.5.4. "Elastic-frictional force 2", p. 2-40, with equal 

static and dynamic coefficients of friction. 

Adding a new element of this type to a model see in Chapter 3, Sect. Fancher leaf spring. 

Model: {UM Data}\SAMPLES\LIBRARY\Fancher, Figure 2.26b. 

2.5.5.10. External function 

The function should be written by the user with the help of programming in the UM envi-

ronment. 

Adding a new element of this type to a model see in Chapter 3, Sect. Data types | External 

functions. 

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
../SAMPLES/LIBRARY/fancher/input.dat
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
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2.5.5.11. List of characteristics 

 

Figure 2.27. Example of a list of characteristics of a traction motor 

A list of characteristics is a set of n curves defining dependences of the force on an argument. 

The argument can be x, v or t. Each of the curves is specified be a set of points, which number 

can be different for different curves. Curves are numbered 1...n in the input order. 

During the simulation a force characteristic is selected by an identifier, which value lies in 

the interval from 0 to n. Zero value of the identifier corresponds to zero value of force, i.e. the 

force is excluded.  

Two modes are available for identifier values: integer and real. In the first case, the force is 

exactly follows the curve with the index equal to the identifier value. In the second case, the 

force characteristic is a linear interpolation of the two nearest curves.  

The user can specify multipliers kx, ky for the abscissa and ordinate values for the purpose of 

change of units, variation of abscissa direction and so on. It is supposed that abscissa in plot is 

the force argument multiplied by kx, i.e. v*kx. The force value corresponds to the ordinate multi-

plied by ky. 

 

An example of the element usage is the modeling of electric motor torque versus rotor angu-

lar velocity for different throttle positions, Figure 2.27. 

Force description in the input program can be found in Chapter 3, Sect. List of characteris-

tics. 

2.5.5.12. Hysteresis 

2.5.5.12.1. Notions and definitions 

Force of this type is used for modeling force elements, which mathematical model contains a 

hysteresis like cushioning device in a train. 

03_um_data_input_program.pdf
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The scheme of the force description curves is shown in Figure 2.28 (force versus element 

length or coordinate value). The force description includes definition of four curves: 

- preloading, which is a nonlinear elastic curve including possible clearance; this section can 

be omitted, in this case only one point (as a rule this points is (0,0)) should be assigned to it; 

- loading curve, containing two parts: the start loading and loading;  

- unloading curve, containing two parts: the start unloading and unloading; 

- stop is a nonlinear elastic curve. 

The start loading/unloading curves are used in particularly for computation of the curve of in-

termediate loading/unloading shown in the figure by the dashed curve. The transition of the 

force law to the intermediate curve occurs in the following two cases. First, when the force is on 

the loading curve and the coordinate starts decreasing. Second, when the force is on the unload-

ing curve and the coordinate starts increasing. After transition to the intermediate curve, the 

force follows it up and/or down until the loading or unloading curves are reached. 

 

Preloading 

Start loading 

Loading 

Unloading 

Start 

unloading 

Stop 

x 

F 

 

Figure 2.28. Scheme of hysteresis curve 

2.5.5.12.2. Details of curve descriptions 

1. The user should enter a set of points, which lie on the curves. 

2. Each of the curves is described by numbers of points; abscissas of the points must be in as-

cending (strictly increasing) order. The curves must be single-valued functions. 

3. Points connecting different curves must be the same. For instance, the first points on un-

loading and start loading curves or the first point on the loading curve and the last point on 

the start loading must coincide. 
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4. A curve can be a polyline (set of straight sections) or an interpolation polynomial, which 

order should be set by the user. Note that the number of points setting a line must be greater 

than the order of polynomial. 

 

Formulas for evaluation of intermediate loading-unloading curve 

Suppose that the transition to the intermediate curve occurs from the loading curve at point V 

(Figure 2.29). The unitless parameter 𝛼 ∈ [0,1] is computed as 

𝛼 =
𝑥𝑉 − 𝑥𝐶
𝑥𝐷 − 𝑥𝐶

  

Point U on the unloading curve is defined by the same value of the parameter . Abscissa of 

point U is 

𝑥𝑈 = 𝑥𝐵𝛼 + 𝑥𝐴(1 − 𝛼)  

The intermediate curve passes through points U, V. Let us compute its arbitrary point u, 

which abscissa corresponds to the unitless parameter 𝑠 ∈ [0,1] 

𝑠 =
𝑥𝑢 − 𝑥𝑈
𝑥𝑉 − 𝑥𝑈

  

 

Start loading 

Loading 

Unloading 

Start 

unloading 

x 

F 

A 

B 

C 

D 
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V 

s s s 
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b 

 

Figure 2.29. Definition of intermediate loading-unloading curve 

Points a, b on the start loading and start unloading curves for the given values of s have the 

following abscissa values: 
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𝑥𝑎 = 𝑥𝐶𝑠 + 𝑥𝐴(1 − 𝑠), 𝑥𝑏 = 𝑥𝐷𝑠 + 𝑥𝐵(1 − 𝑠).  

Then abscissa and ordinate of point u are computed according to the formulas 

𝑥𝑢 = (𝑥𝑈 − 𝑥𝐵𝛼 − 𝑥𝐴(1 − 𝛼))(1 − 𝑠) + (𝑥𝑉 − 𝑥𝐷𝛼 − 𝑥𝐶(1 − 𝛼))𝑠 + 𝑥𝑏𝛼 + 𝑥𝑎(1 − 𝛼), 

𝐹𝑢 = (𝐹𝑈 − 𝐹𝐵𝛼 − 𝐹𝐴(1 − 𝛼))(1 − 𝑠) + (𝐹𝑉 − 𝐹𝐷𝛼 − 𝐹𝐶(1 − 𝛼))𝑠 + 𝐹𝑏𝛼 + 𝐹𝑎(1 − 𝛼). 
 

The intermediate curve defined by these formulas has the following properties: 

- by 𝛼 = 0 it coincides with the start loading curve; 

- by 𝛼 = 1 it coincides with the start unloading curve; 

- for other values of  it passes through points U, V. 

Thus, the intermediate loading/unloading curve is a combination of start loading/unloading 

curves. 

An example of a hysteresis force is shown in Figure 2.30. The preloading curve is a polyline 

passing through three points; it specifies the 10 mm clearance. The loading, unloading and start 

unloading curves are set by 3 points each; the second order interpolation polynomials are used. 

The start loading curve is specified by two closed points; it is invisible on the plot. Three inter-

mediate curves and the stop curve (straight section) are presented in the figure as well. 

Elastic-frictional force with load dependent friction is shown in Figure 2.31. All curves are 

polylines. 

 

Figure 2.30. Example of hysteresis model with a soft characteristic 
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Figure 2.31. Example of friction hysteresis model 

2.5.5.12.3. Modes: stretching, compression, symmetric 

The force element supports the following modes: 

 Symmetric 

In this case, the force curve is symmetric for stretching and compression of the element like 

in Figure 2.32. 

 Stretching 

The hysteresis curves are set for the stretching of the element. Extrapolation of the preload-

ing curve for the compression is used. 

 Compression 

The hysteresis curves are set for the compression of the element. Extrapolation of the pre-

loading curve for the stretching is used. 
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Figure 2.32. Example of symmetric hysteresis 

 

2.5.5.12.4. Extrapolation of the hysteresis curve 

In the compression and stretching modes, an interpolation of the preloading curve is used for 

the coordinate shift in the negative region, i.e. for the stretching in the compression mode, and 

for the compression in the stretching mode. To set zero force value for this opposite shift, a sec-

tion with zero force should be defined in the preload curve, Figure 2.33. Input of the element pa-

rameters see in Chapter 3, Sect. Hysteresis. 

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf


Universal Mechanism 9 2-54 Chapter 2. Technical manual 

 

 

  

Figure 2.33. Examples of extrapolation in compression mode 

Note It is recommended to add a linear dissipative element in parallel with the hyster-

etic one because the intermediate curve does not dissipate energy. 

2.5.5.13. Impact (bump stop) 

Forces of this kind works as bump stops and use the following mathematical model: 

∆= 𝑥 − 𝑙 

𝐹 = −𝑐∆𝑏 − 𝑠𝑡𝑒𝑝(∆,0, ∆𝑑, 0, 𝑑)𝑣, 
 

where 

x is the current length of the force elements for bipolar forces or the current value of joint co-

ordinate for joint forces; 

l is the length of the element at zero clearance when force element starts to work; 

c is the stiffness coefficient in a contact; 

b is the force curve exponent, is not used in the current version of UM software, assumed to 

be 1; 

∆𝑑 is the contact deflection where damping coefficient reaches its maximal value d; 

d is a damping coefficient in a contact, 

step is a special function, see below for details. 

 

Due to using step function effective damping coefficient changes smoothly from zero at zero 

deflection to maximal damping coefficient d at ∆𝑑 deflection.  
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Description of step function 

Step function smoothes switching between two levels of a function Y (Y1, Y2) within some 

(X1, X2) interval. 

𝑠𝑡𝑒𝑝(𝑥, 𝑥1, 𝑥2, 𝑦1, 𝑦2) =

{
 

 
𝑦1, 𝑥 ≤ 𝑥1

𝑦1 + (𝑦2 − 𝑦1) (
𝑥 − 𝑥1
𝑥2 − 𝑥1

)
2

(3 −
2(𝑥 − 𝑥1)

𝑥2 − 𝑥1
)

𝑦2, 𝑥 ≥ 𝑥2 }
 

 

, 𝑥1 < 𝑥 < 𝑥2  

 

Figure 2.34. STEP function 

2.5.5.14. Ratchet 

A simplified model of a ratchet gear is implemented. The force/torque may only shift/turn in 

one direction. As a rule, the element is used in a joint torque description, which locks rotation in 

the direction specified by the user, and the torque is zero by the rotation in the opposite direction. 

The torque model is quite similar to that described in the “Impact” force type Sect. 2.5.5.13. 

"Impact (bump stop)", p. 2-54. 

 

In particular, the torque model of this type is used in the model of the driven sprocket of the 

bike chain gear. 

Models: 

{UM Data}\SAMPLES\LIBRARY\Ratchet; 

{UM Data}\SAMPLES\LIBRARY\ChainGear. 

Data input: Chapter 3, Sect. Ratchet. 

2.5.5.15. Library (DLL) 

Forces of this type are calculated in an external Dynamic-Linked Library (DLL). It helps the 

user to describe any mathematical model of force to include in a considered mechanical system. 

To develop your own external library the user can use any software environment and any pro-

gram language that supports creating Dynamic-Linked Libraries (DLL). Ready-to-use DLLs for 

scalar forces of the Library (DLL) type should be placed in the {UM Data}\[x32|x64]\lib\BFrc 

folder. 

x X2 X1 

Y1 

Y2 

y 

../SAMPLES/LIBRARY/Ratchet/input.dat
../SAMPLES/LIBRARY/ChainGear/input.dat
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
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Please turn to the Chapter 5 of UM User’s Manual, Sect. Creating and using external librar-

ies, for detailed guide into developing and using external libraries in UM models. 

2.5.5.16. List of forces 

List of forces is a set of force elements of above types in parallel. The total force is the sum 

of forces produces by separate elements in the list/ The element allows creating useful combina-

tions of forces such as nonlinear damper in parallel with nonlinear spring, rubber-metal elements 

etc. 

Adding a new element of this type to a model see in Chapter 3, Sect. List of forces. 

  

05_um_programming.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
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2.5.6. Generalized linear force element  

When modeling various technical systems, especially those used in transport, force elements 

linearly depending on the relative displacements of bodies and the velocities of their relative mo-

tion are so often to be obtained whereas the influence of their dynamics is insignificant. A spring 

and a damper belong to this type of elements. To model such forces automatically UM uses the 

generalized linear and damping force elements. An element of this type connects two different 

bodies (one of which may be the basic one). One body is considered the first, the other – the sec-

ond.  

Let us consider the model of a linear elastic force el-

ement in more details (see the figure). Two bodies are 

shown. The A and B2 points of the bodies are connected 

by the linear elastic force element. The body-fixed sys-

tems of coordinates SC1 and SC2 have O1 and O2 as ori-

gins. The element attachment points are set by two vec-

tors 𝜌1
1, 𝜌2

2, each of them should be set in the SC of the 

corresponding body. 

And additional body1-fixed system of coordinates 

(SC of the element) has point A as the origin. Axes of 

SCA are arbitrary oriented relative to SC1, in a simples 

case they are parallel to the axes of SC1. 

An additional point B1 is assigned to the first body. 

The 1

12  vector specifies its position in SC1. Point B1 is 

the origin of a system of coordinate (SCB1), which axes are parallel to SCA. Another additional 

SCB2 is fixed in body 2, its axes are arbitrary oriented relatively to SC2. Point B1 corresponds to 

the position of the second end of the force element (i.e. it coincides with B2) when dr vanishes 

(dr=0). The relative rotation d  is equal to zero when the axes of SCB1 and SCB2 are parallel. 

Thus, the force is equal to the stationary value F0, and the moment vanishes when SCB1 and 

SCB2 coincide. Displacement of B2 relatively to B1 sets the dr  vector, whereas the rotation of 

SCB2 relatively to SCB1 (SCA) sets the d  vector. Both dr  and d  are assumed to be small 

and define the force and the moment values. 

Now consider the mathematical model of the force element. The force F and the moment ap-

plied to the second body at B2 and resolved in SCB1 (SCA) are: 

𝐹 = 𝐹0 − 𝐶𝑟𝑟𝑑𝑟 − 𝐶𝑟𝑎𝑑𝜋 − 𝐷𝑟𝑟𝑣 − 𝐷𝑟𝑎𝜔, 

𝑀 = −𝐶𝑎𝑟𝑑𝑟 − 𝐶𝑎𝑎𝑑𝜋 − 𝐷𝑎𝑟
𝑇 𝑣 − 𝐷𝑎𝑎𝜔 

 

for an viscoelastic, and 

𝐹 = −𝐷𝑟𝑟𝑣 − 𝐷𝑟𝑎𝜔, 

𝑀 = −𝐷𝑎𝑟
𝑇 𝑣 − 𝐷𝑎𝑎𝜔 

 

for a damping element. Here 𝑣 = 𝑑𝑟,𝜔 is the angular velocity of the second body relative to the 

first one. 

The formulas can be rewritten as: 
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𝐺 = 𝐺0 − 𝐶𝑑𝑅 − 𝐷𝑉, 

𝐺 = −𝐷𝑉, 
 

with C and D as the 6 × 6 stiffness and damping matrices, and 

𝐺 = (
𝐹
𝑀
) , 𝐺0 = (

𝐹0
0
) , 𝑑𝑅 = (

𝑑𝑟
𝑑𝜋
) , 𝑉 = (

𝑣
𝜔
).  

Here is the list of parameters describing the element: 

 𝜌1, 𝜌12, 𝜌2 are the coordinates of points A, B1, B2; points A, B1 should be defined in SC1, 

whereas point B2 should be defined in SC2; 

 orientations of SCA (SCB1) relative to SC1, and SCB2 relative to SC2; in the UM Input 

program the oriented connection point are used to define both the point and the orientation 

of system of coordinates; 

 stiffness C and/or damping D matrices as well as the stationary force F0 (optionally); these 

data are defined in SCA (SCB1). 

  

Force element can be also used for modeling a bilinear spring, i.e. a set of two springs where 

the internal spring is lower than the external one. The internal springs works when the longitudi-

nal deflection of the external spring is greater that the difference between the spring heights. A 

bilinear element is described by two stiffness matrices and by the height difference. 

 

Generalized linear force element can be only used if relative displacements of interacting 

bodies are small.  

See Sect. 2.5.9.6. "Spring", p. 2-85. 

Examples of description and/or usage: 

Chapter 7. Sect. Models of Springs; 

{UM Data}\SAMPLES\Rail_Vehicles\Manchester benchmarks\Vehicle1; 

{UM Data}\SAMPLES\Rail_Vehicles\wedgetest. 

07_um_simulation_examples.pdf
../Samples/Rail_vehicles/Manchester_Benchmarks/Vehicle1/input.dat
../Samples/Rail_Vehicles/wedgetest/input.dat
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2.5.7. Contact forces 

2.5.7.1. General information about contact interactions 

2.5.7.1.1. Compliant contact 

Contact interaction in UM is implemented as a compliant contact, where the contact forces 

depend on a penetration of a contact element of one body (points, circle, sphere and so on) into a 

surface connected with another body (plane, Z-surface, sphere, etc). Types of contact force ele-

ments depend on the contact element geometry and discussed in details below. 

Most of the contacts are related to the unilateral interaction, when contact forces appear for a 

positive penetration only. Two forces are computed for each of the contacts: a normal force N 

and a friction force. The normal force is an elastic-dissipative function of the penetration depth 

and its time derivative. The friction force is located in the contact tangential plane. 

Rational choice of contact stiffness and damping parameters is discussed in Sect. 2.6. 

"Methodology of choice of contact parameters", p. 2-100. 

2.5.7.1.2. Models of friction force 

The friction force model must realize both sliding and sticking modes. In the sliding mode, 

the friction force is proportional to the normal force 𝐹 = 𝑓 ∙ 𝑁 and directed opposite to the slid-

ing velocity. The constant of proportionality f is the friction coefficient, which value can depend 

on the sliding velocity, Sect. 2.5.7.1.3. "Dependence of coefficient of friction on sliding velocity" 

p. 2-60. 

 

Figure 2.35. Classical Coulomb friction 

It is known that the classical Coulomb friction model for dependence of the friction force on 

the sliding velocity 𝑣𝑠 (Figure 2.35) cannot be correctly used in the sticking mode numeric. It 

leads to oscillations in friction force and acceleration and because of discontinuity at 0sv . 

Two different models are implemented in UM for the sticking: a model of regularized friction 

law and a flexible sticking. 
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In the case of the regularized friction, the F vs. 𝑣𝑠 characteristic is smoothed for small slid-

ing velocities. This method is used by simulation of rolling processes, Sect. 2.5.7.5. "Other types 

of contact forces" p. 2-68. 

In the case of the flexible sticking, the contact point is flexibly connected to the contact sur-

face. This connection is broken if the friction force exceeds its maximal value. This model is ap-

plied to contacts points-surface and point-curve, Sect. 2.5.7.2. "Points-Plane and Points-Z-

surface types" p. 2-61 and Sect. 2.5.7.3. "Point-Curve contact" p. 2-65. See Sect. 2.5.7.2. 

"Points-Plane and Points-Z-surface types", p. 2-61 for more details. 

2.5.7.1.3. Dependence of coefficient of friction on sliding velocity 

A combination of an exponential model describing the Stribeck effect for lubricated surfaces 

and a viscous friction is considered as a dependence of the coefficient of friction f on the value 

of the sliding velocity [2] [3] [4] 

𝑓(𝑣𝑠) = 𝑓∞ + (𝑓0 − 𝑓∞)𝑒
−(𝑣𝑠/𝑣𝑠𝑡𝑟)

𝛿
+ 𝑣𝑣𝑠,  

where 

𝑓0, 𝑓∞  are the values of coefficient of friction for zero and infinite velocity; 

𝑣𝑠𝑡𝑟  is the Stribeck velocity specifying the velocity range in which the Stribeck effect is ef-

fective; 

𝛿 ∈ [0.5, 1] is the empirical exponent depending of materials; 

𝑣 is the viscous friction constant. 

 

Stribeck effect [2] consists in the experimental fact that the drop from static friction to Cou-

lomb sliding friction is not discontinuous for lubricated surfaces but that it is a continuous func-

tion of the velocity like in Figure 2.36е. 

 

a)    b)    c) 

 

d)    e)    f) 

Figure 2.36. Different models of coefficient of friction verses sliding velocity characteristics 
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The above model allows the user to describe the most of the frequently used friction models, 

Figure 2.36: 

a) 𝑓∞ = 𝑓0, 𝑣𝑠𝑡𝑟 = 0, 𝑣 = 0 is the classical dry friction model with equal static and dynamic 

coefficients; 

b) 𝑓∞ < 𝑓0, 𝑣𝑠𝑡𝑟 = 0, 𝑣 = 0  is the classical dry friction model with static coefficient greater 

than the dynamic one; 

c) 𝑓∞ = 𝑓0, 𝑣𝑠𝑡𝑟 = 0, 𝑣 > 0: in addition to Figure 2.36a the viscous friction is added; 

d) 𝑓∞ > 𝑓0, 𝑣𝑠𝑡𝑟 = 0, 𝑣 > 0: in addition to Figure 2.36b the viscous friction is added; 

e) 𝑓∞ > 𝑓0, 𝑣𝑠𝑡𝑟 > 0, 𝑣 = 0 is the model describing the Stribeck effect; 

f) 𝑓∞ > 𝑓0, 𝑣𝑠𝑡𝑟 > 0, 𝑣 > 0 in addition to Figure 2.36e the viscous friction is added. 

2.5.7.2. Points-Plane and Points-Z-surface types 

 

Figure 2.37. Point-Plane contact model 

UM uses the Points-Plane contact force element for modeling the simplest contact interac-

tions between two bodies (Figure 2.37). A set of body-fixed points is assigned to the first body 

(body 1, a single point C is shown in Figure 2.37). A body-fixed plane is assigned to the second 

body (body 2). The plane is specified by a body fixed point (A) and by an external normal n. The 

contact points, point A and normal n should be given in SC of the corresponding bodies. Number 

of contact points is unlimited. 
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Figure 2.38. 

If the distance  between the contact point and the plane is positive and the contact is a uni-

lateral one, the contact force is equal to zero (no contact, Figure 2.38 left). If <0 (Figure 2.38 

right) the force appears (unilateral contact). The contact force has two components: the normal 

force N directed along the normal n, and the friction force 𝐅𝑓 situated in the contact plane. In 

case of a bilateral contact, the force appears by deviation of a point in both direction with a pos-

sible gap. 

 

Figure 2.39. 

A linear viscoelastic model is used for the normal force 

𝑁 = −𝑐∆ − 𝑑∆.,  

If this value is negative and the contact is a unilateral one, the force is equal to zero (no adhe-

sion). Parameters c, d are constant stiffness and damping coefficients. 

There exist two modes for the Coulomb friction low: sliding and sticking. The force model in 

the sliding mode is 

𝐅𝑓 = −𝑓𝑁𝒗𝑠/‖𝑣𝑠‖,  

where 𝒗𝑠 is the sliding velocity (projection on the contact plane of velocity of point C relative to 

body 2), f is the dynamic friction coefficient. The sliding-sticking transition occurs when the 
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sliding velocity changes its direction on an opposite one. The program realization compares the 

scalar product of the velocity on the current integration step and the velocity on the previous 

step. If the product is negative, the sticking occurs, and the friction force on the previous step 

𝑭𝑔and the 𝒓𝑔0=AD vector are stored, where D is the projection of point C on the contact plane 

(Figure 2.38).  

The friction force model in the sticking mode looks like this: 

𝐹𝑓 = 𝐹𝑔 − 𝑐(𝑟𝑔 − 𝑟𝑔0) − 𝑑𝑣𝑠,  

where 𝒓𝑔 is the current value of the vector AD. Thus, the point D is connected with the contact 

plane by a linear viscoelastic element at the sticking mode. The force 𝐹𝑔 in the formula ensures 

the continuity of the friction force at the sliding-sticking transition. 

The sticking mode is over when the friction force exceeds its maximal value 

‖𝑭𝑓‖ > 𝑓0𝑁,  

where 𝑓0 is the static friction coefficient, 𝑓0 > 𝑓. 

The following parameters specify the Points-Plate force element: 

 Coordinates of contact points in SC of the first body; 

 Coordinates of a point and an external normal to the contact plane in SC of the second body; 

 Parameters characterizing contact forces: dynamic and static friction coefficients, contact 

stiffness and damping coefficients 𝑐, 𝑑. 

 

An additional mode of the contact description is implemented in UM, a so-called mode of 

close contact. In this mode, the normal n and/or the point A are determined automatically. The 

mode is enabled by the following conditions: 

- Number of contact points is greater than 2 (for the normal detection only); 

- Contact points lie in a plane (for the normal detection only); 

- At the moment the simulation starts, the contact point plane (belongs to the first body) and 

the contact plane (the second body) are close, i.e. a small clearance  between the planes is al-

lowed. A small deviation of the normal to the planes is allowed as well. 

The close contact description requires specifying the clearance and the normal deviation ∆𝐧. 

The following actions are made by UM to define the contact plane (the second body): 

 The external normal 𝐧2 to the plane is computed as 

𝐧2 = −𝐧1 + ∆𝐧,  

where 𝐧1 is the normal to the points plane (the first body), ∆𝐧 is the normal deviation. The 𝐧1 

vector is determined by three first contact points, entered by the user, according to right-hand 

screw rule, the points cannot lie on a line. The normal 𝐧1 should be external for the first body 

contact (the opposite vector −𝐧1 is assumed to be external to the contact plane of the second 

body). 

Point A on the contact plane (the second body) is computed according to the formula 

r𝐴 = 𝜌1 + 𝐧1𝛿,  

where  is the clearance, 1  is the vector to the first contact point specified by the user. 
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Before the simulation of the object starts, the contact plane position is calculated anew ac-

cording to initial positions of the bodies. 

The contact can be a bilateral one (the contact forces appears independent on the direction or 

penetration of the point). In this case the clearance can be introduced even if the option of a close 

contact is not applied. 

 

The limited plane contact is available. In this mode, the contact is possible in a closed region 

on the plane. The forces are zero outside the region. The region boundary curve can be rectangle, 

circle or any curve described by a set of points with spline smoothing. 

Note.  Points–Z-surface contact element is mathematically similar to the above one. In 

the case of this element, the contact plane is replaced by a surface, which is de-

scribed by the functional relation 𝑧 = 𝑓(𝑥, 𝑦). No close contact mode is available 

for this contact. 

Some features of linear analysis of models in presence of points-plate contacts are described 

in Chapter 4, Sect. Equilibrium in presence of contact forces. 

04_um_simulation_program.pdf
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2.5.7.3. Point-Curve contact 

 

Figure 2.40. Point-curve contact 

This type of contact interaction realizes sliding with a small deviation of a point belonging to 

the first body on a curve, which is fixed relative to the second body, Figure 2.40. 

Position of the contact point relative to SC1 is set by a constant vector 𝜌1. 

In general the curve in SC2 is specified by a dependence of coordinates of points on the 

curve on a scalar parameter p (the upper index in the equation corresponds to the number of SC) 

𝜌2 = 𝜌2(𝑝), 𝑝 ∈ [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥],  

where 𝜌2  is the radius vector of a point on the curve in SC2. The equivalent scalar form of the 

curve equation is 

𝑥2 = 𝑥2(𝑝), 𝑦2 = 𝑦2(𝑝), 𝑧2 = 𝑧2(𝑝), 

𝜌2 = (𝑥2, 𝑦2, 𝑧2)
𝑇 

 

The following classification of curves is used: 

 open curve, which end points differ, 𝜌2(𝜌𝑚𝑖𝑛) ≠ 𝜌2(𝜌𝑚𝑎𝑥); 

 closed curve, end points are equal, 𝜌2(𝜌𝑚𝑖𝑛) = 𝜌2(𝜌𝑚𝑎𝑥); 

 periodic curve is a closed curve, which have smooth derivative at the end points (tangents 

coincide) 𝜌′2(𝜌𝑚𝑖𝑛) = 𝜌′2(𝜌𝑚𝑎𝑥); the stroke here corresponds to derivative with respect to 

the parameter p. 

     

a     b     c 

Figure 2.41. Examples of different curves 

O1 O2 
1 

(p) 
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Figure 2.41 shows an open (a), closed (b) and periodic (c) curves. 

Each of the two end points of an open curve can be either locking or unlocking. The locking 

end point keeps the contact point on the curve while by passing through the unlocking point the 

contact disappears. 

 

Singular points are locking end points of an open curve as well as points on it where he de-

rivative discontinues (jump in the tangent or edge points, see Figure 2.41b). 

 

Figure 2.42. To model of contact forces in non-singular points 

In case of a contact in non-singular points, two contact forces appear: a normal force N per-

pendicular to the curve and a tangent friction force F. The normal force vector applied to the 

contact point C, Figure 2.42, is computed by the formula 

𝑁 = −𝑐∆𝑟 − 𝑣∆�̇�  

where ∆𝑟 is the vector of the minimal deviation of the point from the curve; c and  are the con-

tact stiffness and damping constants.  

The friction force supports both sliding and modes similar to the point-plane contact model. 

 

Figure 2.43. To model of contact forces in singular point 

In case of contact in a singular point, Figure 2.43, the friction force vanishes, and the normal 

force depends on the vector of deviation r  of the contact point C from the singular point ac-

cording to the above equation. 

Remark.  If the contact stiffness is big enough, the deviation of the contact point from the 

curve is small. Values of contact stiffness and damping constants should be chose 

1 

C N 

F 

r 

1 

C N 

r 
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according to recommendations in Sect. 2.6. "Methodology of choice of contact 

parameters", p. 2-100. 

2.5.7.4. Contact of circle with cylinder with curved axis 

The element models a compliant contact of a circle with a cylinder, which axis is set by a 

smooth curve. It is assumed that the axis curve intersects the circle plane under the angle, which 

differs from the right angle less than 30. The normal force depends on the penetration depth and 

rate. Friction force model is described in Sect. 2.5.7.5. "Other types of contact forces", p. 2-68. 

The force element can be applied in simulation of a pipe dynamics in cylindrical holes. 

 

Figure 2.44. Modeling of cylinder motion in a cylindrical hole with curved axis 

Model (Figure 2.44): {UM Data}\SAMPLES\LIBRARY\CylCircle. 

  

../Samples/Library/CylCircle/input.dat
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2.5.7.5. Other types of contact forces 

UM allows other types of contact: 

 Sphere-Plane; 

 Circle-Plane; 

 Sphere-Sphere;  

 Circle-Z surface  

 Sphere-Z surface. 

 

All of these contacts describe rolling one body on a surface of another one.  

Consider mathematical models of the contacts. First of all, the minimal distance between the 

surfaces is determined. If the distance is positive, contact forces are zero, if not, the normal force 

N is computed (Sect. 2.5.7.1. "General information about contact interactions", p. 2-59). The 

friction force model differs from that in Sect. 2.5.7.1. "General information about contact inter-

actions", p. 2-59: 

𝐅𝑓 =

{
 

 −
𝑓𝑁𝐯𝑠
‖𝐯𝑠‖

, ‖𝐯𝑠‖ > 𝑣𝑠
∗,

−
𝑓𝑁𝐯𝑠
𝑣𝑠∗

, ‖𝐯𝑠‖ ≤ 𝑣𝑠
∗,

  

where f is the dynamic friction coefficient, N is the normal force, 𝐯𝑠 is the sliding velocity, 𝑣𝑠
∗ is 

the empirical (small enough) value of sliding velocity. If the sliding velocity as not small, the 

classical model of friction is used, else the viscous damping is considered. The 𝑣𝑠
∗ should be set 

by the user. 

 

Figure 2.45. Regularized friction model 

Rolling and spin friction 

Rolling and spin friction are available for circle and sphere contact models. Let us consider a 

body angular velocity ω  as a sum  

rollspin ωωω  . 

Here the first summand  spinω  is perpendicular to the contact surface and corresponds to a spin, 

the second summand rollω  lies in the tangent plane and corresponds to the rolling. The spin 
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spinM  and rolling rollM  friction torques are computed according to formulas, which are similar 

to the sliding friction 
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The spin spink  and rolling rollk  coefficients of friction are measured in meters,   is the 

empirical (small enough) value of angular velocity similar to velocity 𝑣𝑠
∗ in Figure 2.45. 
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2.5.8. 3D contact 

The common approach for simulation of contact between rigid bodies based on its contact 

manifolds defined through graphical objects is implemented in UM. This approach treats nonde-

formable 3D objects with small overlaps at the contact. The presented approach consists of two 

parts: collision detection for arbitrary polyhedrons and then a contact force calculation. Collision 

detection deals with generalized three-dimensional clipping algorithm by Cyrus and Beck [2]. 

Contact force calculation is based on a point-plane model and computed as a sum of normal vis-

cous-elastic and tangential dry friction forces. Several examples of application of this approach 

for simulation of multibody system dynamics are given. 

 

Collision Detection for Polyhedrons 

To accelerate computational processes the collision detection is typically divided into so-

called far and near collision detection problems. Far collision detection is usually a fast algo-

rithm that should select polyhedrons for the following, usually more time-consuming, near colli-

sion detection. On the first stage of the far collision detection circumscribed spheres around pol-

yhedrons are created and its intersection is checked. The polyhedrons that passed through the far 

collision detection are treated by a near collision detection algorithm.  

The well-known in computer graphics generalized three-dimensional clipping algorithm by 

Cyrus and Beck is used as the near collision detection algorithm. The algorithm deals with two 

convex polyhedrons and gives as a result clipped edges of one polyhedron that lie within another 

one and vice-versa, see Figure below. For example, the algorithm gives the set of edges {E1, E2, 

E3} of Body2 and the empty set of edges for Body1 in Figure 2.46a and {E1} of Body1 and {E2} of 

Body2 in Figure 2.46b. 

 

 

a) b) 

Figure 2.46. Vertex-face and edge-edge penetration 

Contact force calculation 

After all collisions between the neighboring polyhedron pairs have been detected, the contact 

forces have to be determined. Let us consider a pair of polyhedrons. Having a set of clipped edg-

es that belong to each polyhedron the algorithm of calculation of contact forces arranges contact 

points on each edge, see Figure 2.47a. The step size between neighboring contact points is a pa-

rameter of the mathematical model that depends on a characteristic dimension of polyhedrons. 

Then for each contact point the nearest face on another polyhedron from the pair is determined. 

As soon as pairs of points and planes (faces) are obtained the contact force R can be calculated 

Body
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as a superposition of normal viscous-elastic force �̅�, depending on penetration Δ and its deriva-

tive, and tangential dry friction force �̅�𝑓, see Figure 2.47b, [2]. 

Special control procedure keeps position of contact points on an edge during a contacting 

phase even the length of clipped part of the edge is changed. Such strategy provides smooth 

changing a resultant vector of contact force between two bodies with time. 

 

  

a) b) 

Figure 2.47. Contact points and forces 

The presented approach perfectly manages both basic contact situations: vertex-face and 

edge-edge penetrations, Figure 2.46. Since the Cyrus and Beck algorithm deals with convex pol-

yhedrons, the presented approach for contact force simulation is also applicable for a case of 

convex polyhedrons only. However the suggested algorithms can be enlarged for non-convex 

case if non-convex polyhedrons would be preliminarily divided into convex ones. In practice this 

strategy works well when a convex decomposition is available with a moderate number of piec-

es, it breaks down for utterly non-convex objects. 

2.5.9. Special forces 

The following types of force elements are implemented in UM as special forces: 

 Gearing; 

 Combined friction; 

 Cam; 

 Spring. 

2.5.9.1. Gearing 

The gearing is realized in UM as a simplified model of contact iterations of gears. The force 

model can be used for simulation of plane gear (internal and external) and bevel gearing taking 

into account possible clearance between teeth as well as a compliance reduced to the contact 

point. 

The gearing is specified by the following parameters (Figure 2.48): 

 two points A and B on the gear axes coinciding with the gear centers (coordinates should be 

given in body-fixed frames); 

 two unit axle vectors (in body-fixed frames); 

 gearing ratio (radius of the first gear R1 divided by the radius of the second one R2); 
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 clearance ; 

 gearing stiffness coefficient reduced to the contact point c (N/m); 

 gearing damping coefficient reduced to the contact point d (Ns/m); 

 type of gearing internal or external, for plane gearing only. 

Gear radii are calculated by UM automatically. 

 

e1 
e2 

A 

B 

 

Figure 2.48. 

The gearing is modeled by a tangential force at the contact as 

𝐹 =

{
 
 

 
 −𝑐 (∆ −

𝛿

2
) − 𝑑∆̇, ∆>

𝛿

2

−𝑐 (∆ +
𝛿

2
) − 𝑑∆̇, ∆< −

𝛿

2

0, |∆| <
𝛿

2
,

 

∆= 𝑅2𝜑2 ± 𝑅1𝜑1. 

 

Here the force acts on the second body (the opposite force acts on the first one). 𝜑1, 𝜑2 are 

the angles of gear rotations. The minus sign in  corresponds to an external gearing. 

 

Remarks.  

The gear axes must lie in a plane. 

Use the Initial conditions tab of the Object simulation inspector to compute initial velocities 

before the simulation starts (Chapter 4). 

 

Models:  

{UM Data}\SAMPLES\LIBRARY\Gears; 

{UM Data}\SAMPLES\TUTORIAL\Crusher. 

2.5.9.2. Chain gear 

The force element is used for a simplified description of chain gears. It is assumed that the 

massless chain connects two gears, which radii must be specified. Gear axes must be parallel on 

near parallel. The mathematical model of the chain is similar to that for the gearing force ele-

ment, Sect. 2.5.9.1. "Gearing", p. 2-71: the chain produces a viscoelastic force, which depends 

on differences in rotation angles and rates taking into account the gear ratio. It is assumed as well 

that only one chain strand is loaded at each moment, Figure 2.49. 

04_um_simulation_program.pdf
../Samples/Library/Gears/input.dat
../Samples/tutorial/crusher/input.dat
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In particular, the element is used for description of chain gears of bicycles and motorcycles. 

To implement the unilateral chain gear, the torque of the ratchet type is introduced in the joint 

connecting the driven gear with the rear wheel. 

Model: {UM Data}\SAMPLES\LIBRARY\ChainGear. 

 

Description of the element parameters see in Chapter 3, Sect. Chain gear. 

 

Figure 2.49. The model of chain gear 

2.5.9.3. Rack and pinion 

Rack and pinion force element is a special case of gearing described above (see in 

Sect. 2.5.9.1. "Gearing", p. 2-71). The only difference is that the second body (rack) moves 

translational. 

  

../Samples/Library/ChainGear/input.dat
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
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2.5.9.4. Combined friction 
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Figure 2.50. Model of force element “Combined friction”: contact point B belongs to Body 2 

(left) or massless Body 1 (right) 

The “combined friction” force element is a generalization of the point-plane contact. Body2 

is in the contact with a massless body. Contact point B belongs either to Body2 or to the mass-

less body and slides on a contact plane, which is perpendicular to the normal n, Figure 2.50. The 

massless body is connected with Body1 by a force element and moves relative to Body1 along 

the force element axis n. In the fictitious body mode, the massless body can move relative to 

Body1 in one or two tangential directions. The model of interaction of bodies 1 and 2 includes a 

normal force N directed parallel to the normal n, and the friction force. In the sliding mode, the 

friction force depends on the normal force according to the usual dry friction law 𝐹 = 𝜇|𝑁| with 

 as the coefficient of friction.  

 

Main differences of point-plane contact and combined friction element consist in the follow-

ing features. 

 Normal force law can be any nonlinear. 

 Lateral displacements are available for the fictitious body.  

 Limitations on lateral shift both fictitious body relative to Body1 and Body2 relative to the 

fictitious one. 

 

The force element connecting body 1 with the massless body is attached to point A of Body1. 

It is assumed, that during the motion relative to point A the contact plane is stay in the positive 

direction specified by the vector n. The distance 𝑥 = 𝐧 ∙ 𝐴𝐵̅̅ ̅̅ = 𝐧 ∙ 𝐫 > 0 from point A to the con-

tact plane is variable. 

 

The normal force in this model is a function of distance x, the first time derivative of the 

distance v , and of time t  (see Sect. 2.5.5. "Types of scalar forces", p. 2-37), 

𝑁 = 𝑁(𝑥, 𝑣, 𝑡).  

The following modes of the normal force are available: 
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 unilateral, when the interaction forces vanishes by 𝑁 < 0, that means, the contact point 

leaves the contact plane at 𝑁 = 0. 

 bilateral, when the normal force can be negative. 

As a rule, the element is used in the unilateral mode. 

 Two modes are realized for the friction force: sliding and sticking. In the 2dD model fo the 

force element, the friction force is directed along a line rigidly couple with Body1. In a 3D case, 

the friction force lies in the plane perpendicular to the element axis n. 

In any case, the body on which slides Body2 is massless, but two modes should be taken into 

account: without the fictitious body and with it. In its turn, it is possible to set a limitation of shift 

of the fictitious body relative to Body1 or Body2 relative to fictitious body. 

Here is the list of parameters: 

- coordinates of points A, B in SC1 and SC2, respectively; 

- projections of vector n in SC1; 

- model of normal force N; 

- type of contact: unilateral or bilateral;  

- type of element: 2D or 3D; 

- dynamic and static coefficients of friction for friction force F; 

- unit vector e in SC1 specifying the direction of friction force for 2D type of element; 

- coefficients of lateral contact stiffness and damping 𝑐, 𝑑 in the friction sticking mode (are 

not required for some element modes); 

- coefficients of lateral stiffness and damping 𝑐𝑦, 𝑑𝑦 for connection of the fictitious body with 

Body1 (for the mode with fictitious body only); 

- type of lateral shift limitations and gap parameters (are not required for some element 

modes). 

2.5.9.4.1. Mode without fictitious body  

 

 

Body2 

Body1 

 

Figure 2.51. Scheme of “combined friction” force element without fictitious body 

This mode is available both for 2D and 3D element models. 

It is assumed that the massless body on which plane Body2 slides, can move along the force 

element axis n only, and cannot move in the lateral direction, Figure 2.51. In this case, the stand-
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ard friction force in lateral direction is realized by the element, which in the simplest form is pre-

sented by the point-plane contact, Sect. 2.5.7.1. "General information about contact interac-

tions", p. 2-59. The main difference from the point-plane contact consists in the possible nonlin-

ear dependence of the normal force N from the vertical displacement and velocity.  

The combined friction in the considered mode can be realized by an equivalent multibody 

model. Third body 3 with a small mass value with one degree of freedom relative to Body1 is 

introduced. Body3 is connected with Body1 by a force element shown in Figure 2.51 as a spring. 

One or several contact points are introduced between Body2 and Body3. Such the model is anal-

ogous to the combined friction force element in dynamic sense. The disadvantage of this model 

consists in introduction of additional body, degree of freedom and a contact force element, i.e. it 

makes simulation slower. Thus, the combined friction element allows simplifying the modal and 

making simulation faster. 

    

Figure 2.52. Examples of combined friction without fictitious body (left) and its equivalent 

scheme with the third body (right) 

Example 

Models:  

{UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_without_fict; 

{UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_without_fict_MBS. 

 

The example illustrates the use of the combined friction force element without fictitious 

body, and makes proof of correctness of its mathematical model. Two models to be compared 

are shown in Figure 2.52. The models look quite similar, but the first model includes the com-

bined friction element, whereas the second one is the multibody analogue of the combined fric-

tion. The upper body is under horizontal harmonic oscillations; it is supported by the force ele-

ment (the first model) or by the body with a small mass through a contact force (the second 

model). The body possesses a vertical degree of freedom, along which a periodic force can act. A 

detailed description of the models can be found in Chapter 7. Here we consider the main result.  

../Samples/Library/CombFriction/CF2D_without_fict/input.dat
../Samples/Library/CombFriction/CF2D_without_fict_MBS/input.dat
07_um_simulation_examples.pdf
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Figure 2.53. Friction force hysteresis for a constant normal force 

In the case of the constant load the two models show practically the same results in depend-

ence of friction force on the lateral displacements, Figure 2.53. 

 

Figure 2.54. Hysteresis of friction force vs. normal force 
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Figure 2.55. Comparison of dependences of friction force on time 

By the variable vertical load under the action of periodic vertical force, dependence of force 

on lateral shift shows a very small difference, Figure 2.54 (the plot is obtained for the first mod-

el). The most significant differences are take place be the lifting of Body2 and successive im-

pacts, Figure 2.55. 

The results of simulation of the models are similar. This fact gives proof for correctness of 

the combined friction element. 

2.5.9.4.2. Mode with fictitious body without lateral constraints   

 

Body2 

Body1 

Fictitious body 

 

Figure 2.56. Model with fictitious body without constraints 

This mode is available both in 2D and in 3D element model. 
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It is assumed that the fictitious body (FB) with zero mass on which Body2 slides, can addi-

tional move parallel to the contact plane, Figure 2.56. Thus, the FB has two degrees of freedom 

in the contact plane in case of 3D element, and one d.o.f. in the case of 2D element.  

A linear viscous-elastic lateral force R with stiffness and damping constants yy dc ,  appears 

by shifts on the FB relative to Body1. Lateral shifts of the FB take place in the tangential plane. 

In the sticking mode, the shift of the FB is fully defined by motion of point B in the tangen-

tial plane of Body2. 

In the sliding mode, the shift is specified from the equilibrium equation for the FB 

𝑅 = 𝐹,  

where R, F are the viscous-elastic force and friction force applied from the FB to Body2.  

 

For 3D element, this equation has the form of two differential equations  

−𝑑𝑦�̇� − 𝑐𝑦𝑥 = 𝜇𝑁
(�̇� − 𝑣2𝑥)

𝑣𝑠
, 

−𝑑𝑦�̇� − 𝑐𝑦𝑦 = 𝜇𝑁
(�̇� − 𝑣2𝑦)

𝑣𝑠
. 

 

Here  

𝑥, 𝑦 are the coordinates of the FB in the tangential plane; 

𝑣2𝑥, 𝑣2𝑦 are the projections on the tangential plane of velocity of point B of Body2  relative 

to Body1; 

�̇� − 𝑣2𝑥, �̇� − 𝑣2𝑦 is the sliding velocity of point B on the FB; 

𝑣𝑠 = √(�̇� − 𝑣2𝑥)2 + (�̇� − 𝑣2𝑦)
2
 is the absolute value of the sliding velocity. 

These nonlinear differential equations must be solved together with equations of motion of 

the modeled object. Assuming the normal force N constant during the single integration step and 

making the approximate substitution 

𝑥 = 𝑥𝑝 + 𝑣𝑥ℎ, 𝑦 = 𝑦𝑝 + 𝑣𝑦ℎ, 

𝑣𝑥 = �̇�, 𝑣𝑦 = �̇� 
 

the differential equations are replaced by nonlinear algebraic equations relative to the unknown 

velocities 𝑣𝑥 , 𝑣𝑦 of the FB. Here h is the step size, 𝑥𝑝, 𝑦𝑝 are coordinates of the FB on the previ-

ous integration step. Note that the described procedure is equivalent to applying the implicit Eu-

ler method to solving the differential equations. 

 

For the 2D element, one differential equation takes place corresponding to the shift of point 

B along the element axis e, Figure 2.51. 

−𝑑𝑦�̇� − 𝑐𝑦𝑥 = 𝜇𝑁
(�̇� − 𝑣2𝑥)

|�̇� − 𝑣2𝑥|
= 𝐹.  

Assuming a constant value of the normal force N during one integration step and sliding ve-

locity does not change its sign during this interval, force F in the right hand side of the equation 

is constant, and the relation valid 
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𝑥 = (𝑥𝑝 +
𝐹

𝑐𝑦
)𝑒

−
𝑐𝑦
𝑑𝑦
(𝑡−𝑡𝑝)

−
𝐹

𝑐𝑦
.  

Here 2 is the value of coordinate x on the previous integration step at the moment 𝑡𝑝. 

 

The combined friction in the discussed mode can be realized by an equivalent multibody 

model similar to that described in the previous section. The body with a small mass must have in 

this case either three (3D) or two (2D) translational degrees of freedom relative to Body1. 

 

Example. 

Models:  

{UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_with_fict; 

{UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_with_fict_MBS. 

Consider an example illustrating the use of the combined friction with FB without limitations 

on shift and proving the correctness of its mathematical model and implementation, Figure 2.52. 

The general structure of the models is analogous to that for the example in Sect. 2.5.9.4.1. "Mode 

without fictitious body", p. 2-75. Comparison of models in Figure 2.57 confirms the correctness 

of mathematical models described in this section. 

Remark. Sometimes a multibody model has an important advantage in comparison with 

the combined friction because it lets to simulation of self-excited vibrations, 

which can appear is such the systems. 

 

Figure 2.57. Hysteresis of friction force for a constant normal force for the combined friction 

(left) and for the multibody model (right) 

../Samples/Library/CombFriction/CF2D_with_fict/input.dat
../Samples/Library/CombFriction/CF2D_with_fict_MBS/input.dat
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2.5.9.4.3. Mode with restrictions on shift of fictitious body 

 

 

Body2 

Body1 

Fictitious body 

 

Figure 2.58. Restriction on lateral shift of FB 

This mode is implemented for 2D element with FB.  

In this mode, the lateral shift of the FB has limits such as (Figure 2.58) 

𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], 𝑥𝑚𝑖𝑛 < 0, 𝑥𝑚𝑎𝑥 > 0,  

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 are limit values of the lateral coordinate of the FB. 

 

Example. 

Model: {UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_with_fict_limit_fict. 

Consider an example illustrating the use of the combined friction with the FB. The general 

structure of the model is similar to that in Sect. 2.5.9.4.1. "Mode without fictitious body", p. 2-75. 

The test computation of frictions force by harmonic lateral oscillations of Body2 relative to 

Body1 with amplitude 20 mm is presented in Figure 2.59. A 10 mm gap for a side is specified. 

Remark.  If the FB does not reach the limits, the force element model coincides with than 

in Sect. 2.5.9.4.2. "Mode with fictitious body without lateral constraints", p. 2-78. 

../Samples/Library/CombFriction/CF2D_with_fict_limit_fict/input.dat
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Figure 2.59. Hysteresis of force element with restrictions of the lateral shift of FB 

2.5.9.4.4. Mode with restriction on Body2 

 

 

Body2 

Body1 

Fictitious body 

 

Figure 2.60. Limitations on lateral shift of Body2 relative to FB 

The model is implemented for 2D element with the FB. 

In this model, the lateral shift 2x  of Body2 relative to FB is limited as (Figure 2.60) 

∆𝑥2 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], 𝑥𝑚𝑖𝑛 < 0, 𝑥𝑚𝑎𝑥 > 0,  

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 are limit values of lateral shift. 

Example. 

Sticking. The FB is inside 

the gap 

Limitations are reached 

Sliding 

Sliding 
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Model: {UM Data}\SAMPLES\LIBRARY\CombFriction\CF2D_with_fict_limit_body2. 

Consider an example illustrating the use of the combined friction with restriction on lateral 

shift of Body2 relative to FB. The general structure of the model is similar to that in 

Sect. 2.5.9.4.1. "Mode without fictitious body", p. 2-75. The test computation of frictions force 

by harmonic lateral oscillations of Body2 relative to Body1 with amplitude 20 mm is presented 

in Figure 2.60. A 10 mm gap for a side is specified. 

Remark.  If Body2 does not reach the limits, the force element model coincides with than 

in Sect. 2.5.9.4.2. "Mode with fictitious body without lateral constraints", p. 2-78. 

 

Figure 2.61. Hysteresis of force element with restrictions of the lateral shift of Body2 relative to 

FB 

  

Sticking 

Body2 reaches limita-

tions 

Sliding 

Sliding 

../Samples/Library/CombFriction/CF2D_with_fict_limit_body2/input.dat
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2.5.9.5. Cam 

 

 

Figure 2.62. Types of cam models 

The special case of contact interaction is an interaction of a cam and a piston or a link. The 

mathematical model of this interaction is similar to one described above 

(Sect. 2.5.7.1.1. "Compliant contact", p. 2-59). Types of cam-piston (cam-link) couples and ex-

amples of their using are shown in the Figure 2.62. 

 

Three types of cam pairs are implemented in UM depending on the contact type: 

 point (the first figure); 

 roller (2
nd

 and 5
th

 figure); 

 plane (3
rd

 and 4
th

 figure). 

 

The Coulomb (dry) friction is taken into account for the plane and point contact types, 

whereas the roller contact is considered as an ideal one (without friction). 

Note.  There is only one contact point at each moment of time. In the multipoint case 

actually the point with the maximal penetration is considered. 

The examples of the description and/or usage: 

Chapter 3. Sect. "Cam"; 

{UM Data}\SAMPLES\Mechanisms\cams. 

 

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
../Samples/Mechanisms/cams/input.dat
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2.5.9.6. Spring 

Special force element Spring is a special case of a general linear force element 

(Sect. 2.5.6. "Generalized linear force element", p. 2-57), which is used for modeling linear heli-

cal springs with equal shear stiffness in any direction perpendicular to the spring axis and with 

the symmetric rigid fixing of ends. It is supposed also that the spring axis is parallel to one of the 

axes of the first body-fixed system of coordinates.  

Stiffness matrix, which is introduced in Sect. 2.5.6. "Generalized linear force element", p. 2-

57, for a spring parallel to Z-axis of the body1-fixed SC, has the following form: 

𝐶 =

(

 
 
 
 

𝑐𝑠 0 0 0 −𝑐𝑠 𝐻/2 0
0 𝑐𝑠 0 𝑐𝑠 𝐻/2 0 0
0 0 𝑐𝑙 0 0 0
0 𝑐𝑠 𝐻/2 0 𝑐𝜑 0 0

−𝑐𝑠 𝐻/2 0 0 0 𝑐𝜑 0

0 0 0 0 0 𝑐𝑎)

 
 
 
 

  

Here 𝑐𝑠, 𝑐𝑙, 𝑐𝜑, 𝑐𝑎 are shear, longitudinal (axial), bending and torsion stiffnesses of the spring, 

H  is the current length of the spring. 

 

 x 

 y 

 z 

dy 

H 

F m 

m 

F 

 Body1 

 Body2 

 

Figure 2.63. Spring forces 

Let us consider how we can get the values for non-diagonal elements of this matrix. Let the 

second body be over the first one. Shift body 2 along Y-axis on dy, Figure 2.63. The force 

𝐹𝑦 = −𝑐𝑠𝑑𝑦 appears. An opposite force acts on the upper end of the spring and the same force 

acts on the lower end. Equilibrium of the spring requires a balancing pair of forces with the mo-

ment 𝑐𝑠𝑑𝑦𝐻. This pair must be realized by two equal (due to symmetry) pairs 𝑐𝑠𝑑𝑦𝐻/2 in the 

upper and lower ends. Thus, the moment with the X-projection 𝑐𝑠𝑑𝑦𝐻/2 acts on the second 

body, which results in the non-diagonal element of the stiffness matrix 

𝐶42 = 𝑐𝑠
𝐻

2
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as well as in the element 𝐶24 which is equal to 𝐶42 due to symmetry of the matrix. Elements 

𝐶52 = 𝐶25 can be obtained analogously. 

  

If the spring is parallel to the Y-axis, its stiffness matrix is 

𝐶 =

(

 
 
 
 

𝑐𝑠 0 0 0 0 ±𝑐𝑠 𝐻/2
0 𝑐𝑙 0 0 0 0

0 0 𝑐𝑠 ∓𝑐𝑠 𝐻/2 0 0

0 0 ∓𝑐𝑠 𝐻/2 𝑐𝜑 0 0

0 0 0 0 𝑐𝑎 0
±𝑐𝑠 𝐻/2 0 0 0 0 𝑐𝜑 )

 
 
 
 

.  

This matrix is obtained from the previous one permutations 𝑥 → 𝑧, 𝑦 → 𝑥, 𝑧 → 𝑦. Finally, 

here is the matrix for a X-parallel element. 

𝐶 =

(

 
 
 
 

𝑐𝑙 0 0 0 0 0
0 𝑐𝑠 0 0 0 ±𝑐𝑠 𝐻/2
0 0 𝑐𝑠 0 ±𝑐𝑠 𝐻/2 0
0 0 0 𝑐𝑎 0 0

0 0 ∓𝑐𝑠 𝐻/2 0 𝑐𝜑 0

0 ∓𝑐𝑠 𝐻/2 0 0 0 𝑐𝜑 )

 
 
 
 

.  

Two types of specifying stiffness parameters are implemented: theoretical evaluation of a 

coil spring and experimental data. 

2.5.9.6.1. Theoretical spring stiffness 

The stiffness parameters are computed according to the following formulas: 

𝑐𝑙 =
𝐺𝑑4

64𝑛𝑅3
, 𝑐𝑎 =

𝐸𝑑4

128𝑅𝑛
, 

𝑐𝑠 =
1

1
𝑐1𝑠

+
𝐻2

12𝑐2𝑠

, 𝑐𝜑 =
𝑐2𝑠

1 −
𝐻2

4𝑐2𝑠 (
1
𝑐1𝑠

+
𝐻2

3𝑐2𝑠
)

.  

Here 𝑐𝑙𝑠 = 2(1 + 𝜇)𝑐𝑙, 𝑐2𝑠 = 2𝑐𝑎/(2 + 𝜇), G, E are the shear and Young modulus, µ is the 

Poisson's ratio, d in the diameter of spring wire, R is the spring radius, n is the number of active 

coils. 

Thus, the shear and bending stiffnesses depend on the current spring length H, so they are not 

constant at simulation. In particular, the shear stiffness increases with the compression of the 

spring. 

2.5.9.6.2. Setting stiffnesses by experimental data 

The user can set both constant stiffness parameters and variable depending on the axial com-

pression. 

Note.  If it is necessary to describe a spring, which is not parallel to one of the body1-

fixed axis, a special fictitious body should be introduced. This body must be fixed 
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to body1 one of its coordinate axis must have the desirable direction. Joint fixing 

the fictitious body and body1 can be a generalized joint, which allows constant 

rotations as elementary transformations (Sect. 2.2.2.3. "Generalized joint", p. 2-

17), and can provide any orientation of the fictitious body relative to body1. 

Examples of description and/or usage: 

Chapter 7. Sect. Models of Springs; 

{UM Data}\SAMPLES\Rail_Vehicles\AC4. 

07_um_simulation_examples.pdf
../Samples/Rail_Vehicles/AC4/input.dat
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2.5.9.7. Bushings 

Element of this type is used for modeling linear and nonlinear compliant joints (bushings). 

 

r1 

r2 
1 

2 

B 
A 

Body1 

Body2 

 

Figure 2.64. Systems of coordinates of a bushing 

Consider the mathematical model of a bushing. Let us introduce two systems of coordinates. 

The first system SCB1 is fixed relative to body 1, the second one SCB2 is fixed relative to body 

2. Vectors 21,  and constant rotation matrices 𝐴𝐵1, 𝐴𝐵2 determine the positions of SCB1 and 

SCB2 relative to the bodies.  

It is supposed that deviation of SCB2 relative to SCB1 is small. 

In general the mathematical model of the bushing as a force element is expressed in terms of 

the displacement of point B relative to SCB1 

∆𝑟 = 𝑟2 + 𝜌2 − 𝑟1 − 𝜌1  

and the direct cosine matrix, which sets the orientation of SCB2 relative to SCb1 

𝐴𝐵1𝐵2 = 𝐴𝐵1
𝑇 𝐴10𝐴02𝐴𝐵2  

This matrix is nearly the identity one for small deviations of SCB2 from SCB1. In this case a 

vector of small rotation of SCB2 relative to SCB1 can be introduced as 

∆𝜋 = (

∆𝜋𝑥
∆𝜋𝑦
∆𝜋𝑧

).  

Components of this vector correspond to small rotation angles of SCB2 about axis of SCB1. 

The skew-symmetric matrix corresponding to the rotation vector depends on the direct cosine 

matrix according to the formula 

∆�̃� = (

0 −∆𝜋𝑧 ∆𝜋𝑦
∆𝜋𝑧 0 −∆𝜋𝑥
−∆𝜋𝑦 ∆𝜋𝑥 0

) =
𝐴𝐵1𝐵2 − 𝐴𝐵1𝐵2

𝑇

2
.  
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This expression is used for evaluation of the rotation vector by the simulation. 

 

Input of the element parameters see in Chapter 3, Sect. Data Input | Input of force elements | 

Special forces | Bushings. 

2.5.9.7.1. Linear model of bushing 

In case of a linear bushing its mathematical model is: 

(𝐹
𝐵1

𝑀𝐵1) = (
𝐹0
𝑀0
) − 𝐶 (

∆𝑟 − ∆𝑟0
∆𝜋 − ∆𝜋0

) − 𝐷 (
𝑣12
𝜔12

)  

Here 𝐹𝐵1, 𝑀𝐵1 are the force and the torque produced by the element expressed in SCb1 and 

reduced to point B. The following constant parameters specifying the bushing model must be set 

by the user (all vectors are resolved in SCB1): 

- C and D are the constant diagonal matrices, which specify stiffness and damping constants 

by movement/rotation along/about axes of SCB1; 

- the vectors ∆𝑟0, ∆𝜋0 set small offset, i.e. a ‘constant’ deviation of CSB2, for instance in sta-

tionary position of the model; 

𝑣12 = ∆�̇� is re velocity of the SCB2 origin relative to the second body; 

𝜔12 = 𝜔2 − 𝜔1 is the relative angular velocity; 

𝐹0, 𝑀0 are constant values of force and torque for zero relative velocities and ∆𝑟 = ∆𝑟0,

∆𝜋 = ∆𝜋0; these vectors are usually used for setting the stationary or static values of forces, of-

ten by ∆𝑟0 = 0, ∆𝜋0 = 0. 

2.5.9.7.2. Pointwise model of bushing 

In case of a pointwise bushing its mathematical model is: 

(𝐹
𝐵1

𝑀𝐵1) = (
𝐹0
𝑀0
) − (

𝐹𝑒
𝑀𝑒
) − 𝐷 (

𝑣12
𝜔12

)  

Nonlinear part of the model is set by points and concentrated in dependence of the force and 

torque 𝐹𝑒 , 𝑀𝑒 on the corresponding components of vectors ∆𝑟 − ∆𝑟0, ∆𝜋 − ∆𝜋0. 

𝐹𝑒𝑥 = 𝐹𝑒𝑥(∆𝑥 − ∆𝑥0), 𝐹𝑒𝑦 = 𝐹𝑒𝑦(∆𝑦 − ∆𝑦0), 𝐹𝑒𝑧 = 𝐹𝑒𝑧(∆𝑧 − ∆𝑧0), 

𝑀𝑒𝑥 = 𝑀𝑒𝑥(∆𝜋𝑥 − ∆𝜋0𝑥),𝑀𝑒𝑦 = 𝑀𝑒𝑦(∆𝜋𝑦 − ∆𝜋0𝑦),𝑀𝑒𝑧 = 𝑀𝑒𝑧(∆𝜋𝑧 − ∆𝜋0𝑧). 
 

Nonlinear dependencies of these components on displacements must be set by the user as 

plots.  

In particular, a pointwise bushing is often used for modeling or contacts with gaps on transla-

tional and rotational degrees of freedom. 

2.5.9.7.3. Generalized bushing 

The generalized bushing is the most powerful element for description of nonlinear force con-

necting bodies. Projections of the force and torque in SCB1 are set with the help of models of 

scalar forces described in Sect. 2.5.5. "Types of scalar forces", p. 2-37. A projection of the force 

depends on the relative displacement along the corresponding axis, on the time derivative of this 

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/03_um_data_input_program.pdf
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displacement, and time t. Analogously a torque projection depends on the angle of relative rota-

tion about the axis, on the projection of the relative angular velocity and t. 

𝐹𝑒𝑥 = 𝐹𝑒𝑥(∆𝑥, ∆�̇�, 𝑡), 𝐹𝑒𝑦 = 𝐹𝑒𝑦(∆𝑦, ∆�̇�, 𝑡), 𝐹𝑒𝑧 = 𝐹𝑒𝑧(∆𝑧, ∆�̇�, 𝑡), 

𝑀𝑒𝑥 = 𝑀𝑒𝑥(∆𝜋𝑥, 𝜔12,𝑥, 𝑡), 𝑀𝑒𝑦 = 𝑀𝑒𝑦(∆𝜋𝑦, 𝜔12,𝑦, 𝑡),𝑀𝑒𝑧 = 𝑀𝑒𝑧(∆𝜋𝑧, 𝜔12,𝑧, 𝑡). 
 

The linear and pointwise bushings are particular cases of the generalized type corresponding 

to the linear (Sect. 2.5.5.1. "Linear force", p. 2-37) and pointwise (Sect. 2.5.5.7. "Pointwise mod-

el", p. 2-45) scalar forces. 

Use of sets of forces in parallel allows describing connections with complex behavior, which 

can differ for different directions. 
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2.5.9.8. Air springs 

The following models of air springs are available: tabular, Nishimura's, Berg's, thermody-

namic. 

List of symbols: 

𝑛 – Polytropic index; 

𝑅 – Gas constant for air; 

𝐴𝑒 – Effective area of air spring; 

𝑑𝐴𝑒 𝑑𝑧⁄  – Effective area gradient; 

𝑃𝑎 – Atmospheric pressure; 

𝑃0 – Internal pressure in air spring at equilibrium state; 

𝑃𝑏 – Bellow pressure; 

𝑃𝑡 – Auxiliary tank pressure; 

𝑉𝑏 – Bellow volume; 

𝑉𝑡 – Auxiliary tank volume; 

𝐿𝑝 – Pipe length; 

𝑑𝑝 – Pipe diameter; 

𝜆 – Distributed pressure drop coefficient; 

𝜁 – Lumped pressure drop coefficient; 

𝐶 – Sonic conductance; 

𝑏 – Critical pressure ratio. 

2.5.9.8.1. Tabular model 

The tabular model of the air spring uses experimental static tabular data on the dependence of 

the F force and V volume on the height of the air spring and the air pressure inside its p. These 

data are obtained by isobaric loading of the air spring. The detailed mathematical model of the 

tabular air spring is described in Chapter 31 of the user's guide. The tabular model is the only 

model of the air spring that allows you to create pneumatic systems. 

31_um_pneumatics.pdf
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2.5.9.8.2. Nishimura model 

 

Figure 65. Nishimura model 

𝑐1 = 𝑛𝐴𝑒
2
𝑃0
𝑉𝑏
, 𝑐2 = (𝑃0 − 𝑃𝑎)

𝑑𝐴𝑒
𝑑𝑧

, 𝑐3 = 𝑛𝐴𝑒
2
𝑃0
𝑉𝑡
, 𝑑 =

0,126

𝑑𝑝
3 𝐴𝑒

2
𝑃0
𝑅𝑇

𝑔 

{
𝑑�̇� = 𝑐1(𝑧 − 𝑤) − 𝑐3𝑤

𝐹𝑧 = (𝑃0 − 𝑃𝑎)𝐴𝑒 + 𝑐2𝑧 + 𝑐1(𝑧 − 𝑤)
 

2.5.9.8.3. Berg model 

 

Figure 66. Berg model 

𝑐1 = 𝑛𝐴𝑒
2

𝑃0
𝑉𝑏 + 𝑉𝑡

, 𝑐2 = 𝑐1
𝑉𝑡
𝑉𝑏
, 𝑑 =

1

2
𝐴𝑝𝜌𝑘𝑇 (

𝐴𝑒
𝐴𝑝

𝑉𝑡
𝑉𝑏 + 𝑉𝑡

)

3

,  

𝑚 = 𝐿𝑝𝐴𝑝𝜌 (
𝐴𝑒
𝐴𝑝

𝑉𝑡
𝑉𝑏 + 𝑉𝑡

)

2
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𝑘𝑇 = 𝜆
𝐿𝑝

𝑑𝑝
+ 𝜁, 𝜌 =

𝑃0
𝑅𝑇

 

{
𝑚�̈� = 𝑐2(𝑧 − 𝑤) − 𝑑�̇�

2sing(�̇�)

𝐹𝑧 = (𝑃0 − 𝑃𝑎)𝐴𝑒 + 𝑐1𝑧 + 𝑐2(𝑧 − 𝑤)
 

The Berg's model takes into account the inertia effect of air in the pipeline. 

2.5.9.8.4. Thermodynamic model 

 

Figure 67. Thermodynamic model 

It is considered that the connection between pressure, volume and mass of air in the bellow 

and auxiliary tank is described by the polytropic equation, so: 

{
  
 

  
 
�̇�𝑏 =

𝑛

𝑉𝑏
[𝑅𝑇 (

𝑃𝑏
𝑃0
)

1−𝑛
𝑛
𝑞 − 𝑃𝑏

𝑑𝑉𝑏
𝑑𝑧

�̇�]

�̇�𝑡 =
𝑛

𝑉𝑡
𝑅𝑇 (

𝑃𝑡
𝑃0
)

1−𝑛
𝑛
𝑞

𝐹𝑧 = (𝑃𝑏 − 𝑃𝑎)𝐴𝑒(𝑧)

 

Equations of a pipeline mass flow 𝑞: 

 Algebraic 

𝑞 = √
2𝜌𝑝𝐴𝑝2

𝑘𝑇
|𝑃𝑡 − 𝑃𝑏|sign(𝑃𝑡 − 𝑃𝑏) 

𝑞 =

{
 
 

 
 
𝑃1𝐶𝜌𝑟𝑒𝑓√

𝑇𝑟𝑒𝑓

𝑇1
√1 − (

𝑃2 𝑃1⁄ − 𝑏

1 − 𝑏
)

2
𝑃2
𝑃1
> 𝑏

𝑃1𝐶𝜌𝑟𝑒𝑓√
𝑇𝑟𝑒𝑓

𝑇1

𝑃2
𝑃1
≤ 𝑏

 

 Differential 

�̇� =
𝐴𝑝

𝐿𝑝
[(𝑃𝑡 − 𝑃𝑏) −

1

2𝜌𝑝𝐴𝑝2
(𝜆
𝐿𝑝

𝐷𝑝
+ 𝜁)𝑞2sign(𝑞)] 
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Figure 68. Comparison of models 

Models of air springs: 

{UM Data}\Samples\Library\AirSpring\Nishimura; 

{UM Data}\Samples\Library\AirSpring\Berg; 

{UM Data}\Samples\Library\AirSpring\Thermodynamic. 

 

  

file:///D:/SAMPLES/LIBRARY/AirSpring/Nishimura
file:///D:/SAMPLES/LIBRARY/AirSpring/Nishimura
file:///D:/SAMPLES/LIBRARY/AirSpring/Thermodynamic
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2.5.9.9. T-forces 

The element defines a force and a moment, which components can be defined in two modes: 

 explicit analytic expressions of time and kinematic functions; 

 functions of time stored in columns of a text file (the first column contains time). 

Remark.  The user can introduce additional applied forces acting on bodies in the control 

file without describing the forces in the Input module. 
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2.5.10. Friction in joints depending on reactions 

There exists a simple method how to model a friction in rotational and translational joints 

depending on reaction forces. For instance, a frictional torque in rotational joint in a sliding state 

can be proportional to the module of a component of reaction force perpendicular to the joint ax-

is. 

The friction joint force is used for this purpose, see Section 2.5.5.2 Friction force. The slid-

ing force magnitude must be parameterized by an identifier. Using the Identifier control tool in 

the simulation module a necessary variable is assigned to this identifier. 

  

Figure 2.69. Pendulum 

 

Figure 2.70. Frictional torque in joint 

Example: {UM Data}\Samples\Library\Joint with friction. 

The model contains a pendulum with a cone shape (Figure 2.69) connected with the base by 

a rotational joint with friction. A frictional torque is applied to the joint (Figure 2.70), which slid-

ing value is set by the expression Rjoint1*ffr. The identifier ffr corresponds to the friction coeffi-

cient and Rjoint1 corresponds to the module of reaction force in joint. The value of the identifier 

Rjoint1 must be assigned in the simulation module. 
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Figure 2.71. Module of reaction force 

  

Figure 2.72. Assignment of variable to identifier 

In the simulation program, a variable equal to the reaction force module is created with the 

wizard of variables, Figure 2.71. Then this variable is assigned to the identifier Rjoint1 on the 

Identifier control tab of the inspector, Figure 2.72. As a result, the friction force in sliding mode 

will be proportional to the module of the reaction force like in Figure 2.73. 
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Figure 2.73. Plots: module of reaction force and friction torque 
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2.5.11. Force element response in the frequency domain 

Force element response in the frequency domain is a useful utility for a scalar force (a bipolar 

force element or a joint force). Consider a scalar force element, which dependence on a scalar 

variable x and its time derivative v is the following (Sect. 2.5.5. "Types of scalar forces", p. 2-

37): 

𝐹 = 𝐹(𝑥, 𝑣).  

Consider a harmonic excitation of the force 

𝑥(𝑡) = 𝑥0 + 𝑎𝑠𝑖𝑛(2𝜋𝑓𝑡) 

𝑣(𝑡) = 2𝜋𝑓𝑎𝑠𝑖𝑛(2𝜋𝑓𝑡), 
 

where 𝑥0, 𝑎, 𝑓 are the center of excitation, its amplitude and frequency in Hz, t is the time varia-

ble. The response is the periodic function 

𝐹(𝑡) = 𝐹(𝑥(𝑡), 𝑣(𝑡)).  

Expand this function into Fourier series keeping zero and first order terms 

𝐹(𝑡) ≈ 𝐹0 + 𝐹𝐾(𝑓)𝑠𝑖𝑛(2𝜋𝑡) − 𝐹𝐶(𝑓)𝑐𝑜𝑠(2𝜋𝑓𝑡) = 

= 𝐹0 + 𝐹1(𝑓)𝑠𝑖𝑛(2𝜋𝑓𝑡 − 𝛿(𝑓)). 
 

Main characteristics of the force in the frequency domain are introduced according to this 

expansion: 

o Dynamic stiffness 𝐾(𝑓) = 𝐹𝐾(𝑓)/𝑎, 

o Equivalent damping 𝐶(𝑓) = 𝐹𝐶(𝑓)/(2𝜋𝑓𝑎), 

o Phase or damping angle 𝛿(𝑓), 

o Amplitude of the response 𝐹1(𝑓), 

o Dependence of the response function on the coordinate 𝐹(𝑥, 𝑣(𝑥))  and 

ty 𝐹(𝑥, 𝑣(𝑣))  for a fixed excitation frequency. 

 

For description of a tool for force element analysis in the frequency domain see Chapter 4, 

Sect. Force element response in the frequency domain. 

An example for a force element analysis can be found in Chapter 7, Sect. Elastic-friction el-

ement 2. 

04_um_simulation_program.pdf
07_um_simulation_examples.pdf
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2.6. Methodology of choice of contact parameters 

Contact stiffness c and damping   parameters are used in description of a number of force 

elements (Sect. 2.5.7. "Contact forces", p. 2-59, Sect. 2.5.5.2. "Friction force", p. 2-37, 

Sect. 2.5.5.3. "Elastic-frictional force", p. 2-38, Sect. 2.5.9.5. "Cam", p. 2-84). Let us consider 

some methods for estimation their numeric values. 

The real contact stiffness due to elastic deformations in contacts is usually very high (say, 

1110 N/m). It is clear, that for reasonable values of contacting body masses such stiffness intro-

duces a very high frequency in the model (about √𝑐/𝑚, where c is the stiffness, and a m is the 

mass). This makes the model oscillatory stiff and increases CPU expenses considerably due to 

decreasing the integration step size. In practice much less values the stiffness can be set in the 

model. Consider the main reasons for that. 

Applied theory of ordinary differential equations states (a strict proof can be obtained with 

the help of theory of singular degenerate equations) that if a system has two groups of frequen-

cies of different order, e.g. 1–10Hz in the first group and 200–1000Hz in the second one, the 

high frequency processes does not affect practically the low frequency processes. Moreover, 

changing parameters, which determine high frequency processes, does not lead to considerable 

changes of the low frequency processes. That means, if the stiffness c is ‘large enough’, its fur-

ther increase does not affect analyzed processes, if they are ‘slow’. The stiffness is ‘large 

enough’ if the introduced local frequencies are at least by order of magnitude greater than the 

frequencies of analyzed object. The frequency k introduced by the contact stiffness may be esti-

mated by the formula 𝑘 = √𝑐/𝑚, where m is the lower mass of interacting bodies. Thus, if the 

user choose a ‘large enough’ local contact frequency 𝑓 =
𝑘

2𝜋
 Hz, the corresponding contact stiff-

ness can be computed according to the formula 

𝑐 = 4𝜋2𝑓2𝑚. (2.9) 

Consider an example. Let 𝑚 = 20 kg, 𝑓 = 200 Hz (i.e. the main frequencies of the object 

are 1–10 Hz). Then 𝑐 = 3.16 × 107 N/m. 

A stiffness coefficient computed according to this methodology should be verified and cor-

rected by the user. To do this, run simulations for different values of the stiffness and plots of 

object performance variables should be compared. If 2÷10 times increasing the coefficient does 

not affect the results, the stiffness is ‘large enough’. In this case it is recommended to try de-

creasing its value. This may reduce CPU expenses. The boundary of the parameter is its value 

when the plots of performances are changed. 

 

Let us discuss now methodology for choosing a dissipation coefficient  . If this coefficient 

is ‘too small’, high frequency undamped oscillations may appear in the model, which introduce 

large accelerations. Moreover, frequencies of these oscillations according to the methodology 

above have nothing in common with the reality. If the damping is ‘too large’, the equations of 

motion become stiff, and CPU expenses increase. A correct choice of the damping coefficient is 

especially important for systems with unilateral constraints, i.e. for systems with gaps and im-
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pacts, because the damping is responsible for a value of coefficient of restitution. Finally, the 

value of the damping must correlate with the value of the contact stiffness. 

To get a justified value of the contact damping, a very important notion of damping ratio of 

critical 𝛽 and a damping factor 𝛽∗ is used. To clarify this notion consider the equation of free 

linear damped oscillations 

𝑚�̈� + 𝜇�̇� + 𝑐𝑥 = 0. (2.10) 

As it is well known, the solution of this equation depends on ratio of two parameters: the fre-

quency of free undamped oscillations 𝑘 = √𝑐/𝑚  and the damping coefficient 𝑛 = 𝜇/(2𝑚). If 

kn  , the motion is damped oscillations with the frequency 𝑘∗ = √𝑘2 − 𝑛2. If 𝑛 ≥ 𝑘, an aperi-

odic solution takes place. The boundary value 𝑛 = 𝑘 corresponds to a critical damping. The 

damping ratio and the damping factor satisfy the following relations 

𝛽 =
𝑛

𝑘
, 

𝛽∗ =
𝑛

𝑘∗
=

𝑛

√𝑘2 − 𝑛2
∈ [0,∞], 

(2.11) 

Oscillations are undamped if 𝛽 = 𝛽∗ = 0, and by 𝛽 = 1 (𝛽∗ = ∞) the damping is critical. 

The parameters can be expressed in terms of each other, 

𝛽∗ =
𝛽

√1 − 𝛽2
> 𝛽, 𝛽 =

𝛽∗

√1 + 𝛽∗2
  

If 𝛽 < 1, a decrement factor is computed as 

𝐷 = 𝑒−𝜋𝛽
∗
= 𝑒

−
𝜋𝛽

√1−𝛽2 . 
 

The decrement factor determines an amplitude fall on a half of the period of oscillations. If 

the damping is small, 𝛽 ≈ 𝛽∗ and 

𝐷 ≈ 𝑒−𝜋𝛽 .  

Values of the decrement factor for different degrees of damping are presented in Table1. 

Table 1 

Decrement factor versus damping ratio 


 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

D 1 0.729 0.527 0.372 0.254 0.163 0.095 0.046 0.015 0.0015 0 

Figure 2.74 shows solutions for different  . 
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Figure 2.74. Damped vibrations for various damping ratios 

If 𝛽 ≤ 0.1, the damping is often considered as a small one. The value 𝛽 = 0.1 can be rec-

ommended for an approximate in rubber-metal elements. The value 𝛽 = 0.3 is recommended for 

dampers of transport vehicles. If 𝛽 ≥ 1, the system is strongly overdamped.  

The above analysis clarifies the notions ‘too small’ or ‘too large’ damping coefficient. We 

recommend the damping 𝛽 = 0,1 ÷ 0,4 for the contact forces. Thus, if you choose some values 

for stiffness and damping ratio, the coefficient of damping is computed according to the follow-

ing formula 

𝜇 = 2𝛽√𝑚𝑐 (2.12) 

For the above example 𝑐 = 3.16 × 107 N/m with the damping ratio 𝛽 = 0,2 we get 𝜇 ≈

104 Ns/m. 

 

The next important problem is, how collisions may be likely modeled? If we answer this 

question, we could find a more proved value of damping ratio 𝛽 in cases of unilateral contacts.  

Is it is known, one of the most simple and frequently used model of a collision of bodies is 

based on the Newton’s coefficient of restitution e, which can be illustrated by the following ex-

ample. Consider a mass point, which strikes against a fixed plane. The point velocity before the 

collision be 𝑣−, and after the collision – 𝑣+. The coefficient of restitution is 

𝑒 =
𝑣+

𝑣−
.  

 

Figure 2.75. Collision process 
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Consider the model of viscoelastic interaction of the point with the plane (Sect. 2.5.7.1. 

"General information about contact interactions", p. 2-59). The coordinate x  in Figure 2.75 is 

the penetration, which determines the normal contact force 

𝑁𝑥 = −𝑐𝑥 − 𝜇�̇�.  

During the process of the contact the point motion is described by the differential equation 

(2.10) with the following initial conditions: 𝑥(0) = 0, 𝑣(0) = 𝑣−. At the compression stage of 

the collision the normal force increases, and at the relaxation phase it decreases. At some mo-

ment   the normal reaction vanishes and the impact process is over. This, 𝑣(𝜏) = 𝑣+. 

To get the velocity after the impact, consider the solution of Eq. (2.10) 

𝑥 =
𝑣−

𝑘∗
𝑒−𝑛𝑡𝑠𝑖𝑛(𝑘∗𝑡), 

𝑣 = 𝑣−𝑒−𝑛𝑡 (−
𝑛

𝑘∗
𝑠𝑖𝑛(𝑘∗𝑡) + 𝑐𝑜𝑠(𝑘∗𝑡)). 

 

At the end of the collision we have 

0 = 𝑁(𝜏) = 𝜇𝑣(𝜏) + 𝑐𝑥(𝑡) = 𝑚(2𝑛𝑣(𝜏) + 𝑘2𝑥(𝑡))

= 𝑣−𝑒−𝑛𝑡𝑚𝑘∗ (2
𝑛

𝑘∗
𝑠𝑖𝑛(𝑘∗𝜏) + (1 −

𝑛2

𝑘∗2
) 𝑐𝑜𝑠(𝑘∗𝜏)) 

 

so the collision duration τ satisfies the equation 

𝑡𝑔(𝑘∗𝜏) =
2𝛽∗

𝛽∗2 − 1
  

or 

𝜏 =

{
 

 𝜋 +
1

𝑘∗
𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝛽∗

𝛽∗2 − 1
) , 𝛽∗ < 1

1

𝑘∗
𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝛽∗

𝛽∗2 − 1
) , 𝛽∗ ≥ 1

  

The result can be simplified is we find that 

𝑠𝑖𝑛(𝑘∗𝜏) =
2𝛽2

𝛽∗
  

or finally 

𝜏 =
1

𝑘∗
𝑎𝑟𝑐𝑠𝑖𝑛 (

2𝛽2

𝛽∗
)  

Now the velocity after the collision is: 

𝑣+ = |𝑣(𝜏)| =
𝑘2

2𝑛
𝑥(𝜏) =

𝑣−𝑘2

2𝑛𝑘∗
𝑒−𝑛𝜏𝑠𝑖𝑛(𝑘∗𝜏) = 𝑣−𝑒−𝛽

∗𝜑+ .  

Here a lifting off phase 𝜑+ = 𝑘∗𝜏 = arcsin (
2𝛽2

𝛽∗
) is introduced. This phase depends of the ra-

tio 𝛽 (or 𝛽∗) only. 

So, we have obtained the following fine formula for the coefficient of restitution: 
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𝑒 = 𝑒−𝛽
∗𝜑+  

Illustration of dependence of the coefficient of restitution on the damping ratio is given in 

Table 2 and Figure 2.76. 

Table 2 

Coefficient of restitution versus damping ratio 


 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

e 1 0.859 0.744 0.65 0.572 0.506 0.451 0.404 0.364 0.329 0.298 


 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1  

e 0.272 0.249 0.228 0.21 0.194 0.18 0.167 0.155 0.145 0.135  

 

Figure 2.76. Coefficient of restitution versus damping ratio 

If the user knows the coefficient of restitution, he can estimate the damping ration 𝛽 and, re-

spectively, the damping coefficient 𝜇. 

 

2.7. Subsystems 

2.7.1.  Subsystem technique 

If a mechanical system containing hundreds or thousands of bodies is modeled, the equations 

of motion are so huge that problems with their compilation might arise. For such a system the 

subsystem technique is convenient. In this case, the MBS is preliminarily (conditionally) divided 

into a few parts – subsystems – and is called a compound object. Separate subsystems may or 

may not be connected with each other by joints or force elements. 

The subsystem technique is especially effective when several subsystems are kinematically 

identical or, in other words, have the same kinematical scheme. Here is a rigorous definition of 

kinematic identity. 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
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Two subsystems are kinematically identical if, their configuration being arbitrary, it is possi-

ble to bring them into spatial coincidence in the basic SC by means of the following transfor-

mations:  

 translation (the vector is constant); 

 rotation about any axis by a constant angle; 

 changing of the parameters of the kinematic pairs (e.g., changing the lengths of the mem-

bers); 

 changing the values of the local joint coordinates. 

 

For the equations of motion of the kinematically identical subsystems to be the same the fol-

lowing conditions should be satisfied: all the constant parameters (masses, lengths of the struc-

tural elements, etc.), which may vary numerically must be represented in a symbolic form (i.e. by 

identifiers). While modeling motion, different values may be attributed to the parameters of dif-

ferent subsystems. 

UM model of an object can be structured as a tree of external and included subsystems. 

An External subsystem is generated by any preliminarily created UM object – ancestor. All 

modifications made in description of the ancestor are automatically taken by all external subsys-

tems – descendants. Moreover, modification in an external subsystem can be made exclusively 

through modification of the corresponding ancestor. A compound object, which contains external 

subsystems, does own neither structure, nor parameters of external subsystems, but refers to 

them. At the same time, the compound object can add joints and force elements connecting bod-

ies from different subsystems. Thus, in the case of kinematically identical subsystems, the user 

can create an ancestor, generate the equation library for it (dll), and add the ancestor to the object 

as many times as it is necessary. 

Included subsystems, unlike the external ones, belong to the compound object. The object 

owns their structures (bodies, joints, forces, etc.) and parameters. Several included subsystems 

Compound object  

External SS Included SS Bodies, joints... 

External SS 

Included SS 

Bodies, joints.... 

External SS 

Included SS 

Bodies, joints.... 
... ..

. 
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generated by one ancestor can be arbitrary modified. Equations of motion for included subsys-

tems are generated as a part of the object equations. 

Subsystems have a tree structure. An object can contain any number of subsystems (both ex-

ternal and included). Each of the subsystem, in its turn, may be a compound object containing 

subsystems. 

The subsystem technique is the foundation for development data basis for modeling different 

technical systems (such as rail vehicles). 

2.7.2. Standard subsystems 

Standard subsystems are automatically generated subsystems, which are basis for creation of 

models of technical systems taking their features. Standard subsystems are used in the main um 

modules UM: simulation of rail vehicles, automotive vehicles, caterpillar models, and ballast. 

2.7.2.1. Wheelset as standard subsystem 

 

A standard subsystem wheelset is the base of the UM Loco module for simulation of railway 

vehicles. Simultaneously to an automatic adding wheelsets to vehicle models, UM computes rail-

wheel contact forces as well as special interface abilities are available with this module. 

2.7.2.2. Caterpillar 

  

The UM/Caterpillar module is based on a standard subsystem “caterpillar”, which allows the 

user to get a model with any number of tracks, supporting wheels, etc. 
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2.7.2.3.  Ballast 

 

Generated subsystem ‘ballast’. Simulation of the ballast backfilling process 

The ‘ballast’ subsystem is developed for analysis of dynamic properties of broken stone bal-

last. The UM ballast model can include thousands of bodies of different shape. 

2.7.3. Examples of compound objects 

2.7.3.1. Dynamically independent subsystems 

If it is necessary to compare in one time scale the behaviors of the same object in different 

situations or various objects, the method of subsystems is also useful. In this case, the compound 

object containing several subsystems generated by one or many UM objects is formed. For in-

stance, two Puma robots or one Puma robot and a Stanford manipulator can be dealt with as 

compound objects. Here, the subsystems are not dynamically connected. However, the integra-

tion of equations of motion is done for both subsystems simultaneously, and the results are dis-

played out in the same time scale. 

 

The number of dynamically independent subsystems in a compound object is limited only by 

the resources of the user’s PC. 
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2.7.3.2. Locomotive as a compound object 

 

 

    

The model of the TE116 locomotive as a compound object consists of a body and two in-

cluded subsystems – bogies. A bogie contains three included subsystems – wheel-motor blocks, 

one body (a bogie frame), and elements of the secondary suspension (springs and dampers). A 

wheel-motor block consists of one included subsystem (a wheelset is the standard UM subsys-

tem), a motor, elements of the primary suspension (springs, dampers, propulsion rods), gearing. 

The subsystem tree has four levels. 
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The model description has three stages. 

Stage 1. Creation of an object-ancestor: wheel-motor block, which contains a wheelset as an 

included subsystem. 

Stage 2. Creation of an object-ancestor: a bogie, which includes three wheel-motor block 

subsystems. 

Stage 3. Creation of the locomotive object, which includes two bogie subsystems.  

 

Each of the included subsystems is available for separate modification. 

TE116 

First bogie

  

Second bo-

gie 

1st w/m 

block 

2nd w/m 

block 

3rd w/m 

block 

4th w/m 

block 

5th w/m 

block 

6th w/m 

block 

Wset1   Wset2 Wset3 Wset4 Wset5 Wset6 



Universal Mechanism 9 2-110 Chapter 2. Technical manual 

 

2.8. Linearization of equations and equilibrium positions 

2.8.1. Equilibrium equations and their solving 

Consider equations of motion for a multibody system with stationary constraints. If the sys-

tem has closed loops, its equations of motion are 

𝑀(𝑞)�̈� + 𝑘(𝑞, �̇�) = 𝒬(𝑞, �̇�) + 𝐺𝑇(𝑞)𝜆, 

𝑔(𝑞) = 0 
 

At equilibrium by �̇� = 0, �̈� = 0, the following equations take place: 

𝒬(𝑞, 0) + 𝐺(𝑞)𝑇𝜆 = 0,   𝑔(𝑞) = 0 (2.13) 

Here we have nonlinear algebraic equations relative to unknown values of coordinates q=q0 

and Lagrange multipliers 𝜆 = 𝜆0. The Newton-Raphson method is used for solving the equa-

tions. The following linear equations are solved at each the iterations: 

(𝒬𝑞(𝑞0
𝑘, 0) + Ф(𝑞0

𝑘 , 𝜆0
𝑘)) ∆𝑞0

𝑘+1 + 𝐺(𝑞0
𝑘)
𝑇
𝜆0
𝑘+1 = 0, 𝐺(𝑞0

𝑘)∆𝑞0
𝑘+1 = −𝑔(𝑞0

𝑘) = 0, 

𝑞0
𝑘+1 = 𝑞0

𝑘 + 𝑅∆𝑞0
𝑘+1 

 

Here 𝑄𝑞 is the Jacobian matrix 𝑄𝑞 = 𝜕𝑄/𝜕𝑞
𝑇, the matrix Ф is defined by the relation  

Ф =
𝜕(𝐺𝑇𝜆)

𝜕𝑞𝑇
,  

𝑅 ≤ 1 is the relaxation factor, which is usually equal to 1. 

The iterations are considered as successfully converged if the discrepancies in Eqs. (2.13) 

satisfy the condition 

∑|𝛿𝑖| < 𝜀,  

with an error tolerance  . 

User’s initials 𝑞0
0 = 𝑞0 are used as a starting approximation. The Jacobian matrices 

𝑄𝑞(𝑞0
𝑘, 0), Ф(𝑞0

𝑘, 𝜆0
𝑘) are evaluated by finite differences as 

𝒬𝑞𝑖(𝑞0
𝑘, 0) = (𝒬(𝑞0

𝑘 + 𝛿𝑞𝑖 , 0)
𝑇
− 𝒬(𝑞0

𝑘, 0)
𝑇
) /𝛿, 

Ф𝑖(𝑞0
𝑘, 𝜆0

𝑘) = (𝐺(𝑞0
𝑘 + 𝛿𝑞𝑖)

𝑇
− 𝐺(𝑞0

𝑘)
𝑇
) 𝜆0

𝑘/𝛿. 
 

Here 𝑄𝑞𝑖, Ф𝑖 are the columns i of the corresponding matrices,  is a small real number; the 

column 𝛿𝑞𝑖 has one nonzero value at position i, which equals to . 

2.8.2. Natural frequencies, modes, eigenvalues and eigenvectors 

QR algorithm is used for computing both natural frequencies and eigenvalues. Reverse itera-

tions are applied to get modes and eigenforms of linearized equations. 
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2.9. Units of measure 

All the calculations in UM are carried out in the International System of Units: kg, m, s. 

While solving dynamic problems using other units is not recommended (cm, kN, etc.). In the da-

ta input unit angles are usually introduced in degrees (when describing initial conditions and lim-

its), whereas when modeling motion their numerical values are obtained in radians. 

2.10. Generation and analysis of equations of motion 

Equations of motion can be generated in two forms. 

1. Symbolic generation of equations 

Kinematical expressions and the motion equation generation of an object are done in a sym-

bolic form with the help of a built-in specialized computer-algebra system. To decrease the num-

ber of operations more significantly fracturing and substituting procedures are used.  

 

2. Numeric-iterative generation of equations 

 

Often symbolic generation of equations makes the simulation process faster. 

 

The equations of motion of a system are generated according to the Newton-Euler formalism 

and are differential-algebraic. The equations analysis is carried out by means of the ABM, BDF 

numerical multistep methods with the automatic choice of the step size and the order of the 

method, as well as the Park and Gear methods for stiff equations. 

The Park Parallel solver is the powerful numeric-iterative solver, which allows usage of mul-

tithreading on the multi-core processors. 

While integrating the equations computing kinematical characteristics and constraint reaction 

forces is possible. 

The Park and Gear methods with computing of Jacobian matrices are recommended for solv-

ing stiff differential-algebraic equations of motion. 

The obtaining of equilibrium positions of non-linear objects and the linearization of the equa-

tions of motion in the neighborhood of the equilibrium position can also be performed. For linear 

systems, there are standard analysis procedures: the obtaining of natural frequencies and vibra-

tion modes, root locus and so forth. 

See Chapter 4 for more information on the model simulation process. 

2.11. The innovative capacity of the program and program-

ming in UM environment 

To raise its universality, UM has been left open for changes in anything concerning motion 

modeling. The user may include his modules and influence the process of modeling by means of 

the program messages. Programming in the environment of UM assumes using some internal 

procedures and data types, described in the current manual. 

Developing special modules to be linked to the program makes it possible to take into ac-

count the features of various technical system types.  

04_um_simulation_program.pdf
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