

Getting started

批处理仿真

UM 软件入门系列教程

(02)

四川同算科技有限公司 译

2021年3月

本教程介绍使用UM软件进行批处理计算(UM Experiments模块的 Scanning工具)的建模、仿真和后处理方法。请读者在学习本课程之前务必先 学习《UM软件入门系列教程01:多体系统动力学仿真》,并熟悉UM软件的基 本操作:新建模型,创建几何图形、刚体、铰和力元。

入门系列教程有两个模型使用到批处理计算工具:第一个模型是自由振动 和受迫振动的例子,接下来会演示;第二个模型是一个二轴铁道车辆,请见另 一册《**UM软件入门系列教程06:铁道车辆动力学仿真**》。

UM Experiments模块用于对参数化模型进行多变量批处理计算。请先运行 UM Input或UM Simulation程序,选择菜单Help | About,在弹出窗口查看UM Experiments一栏是否为 "+"标记,若显示为 "-",则请重新申请试用或购买 正版许可。

版权和商标

本教程仅供读者参考,不同的版本其界面可能有个别不同之处,我们会不 定期进行修订。对于本文档中可能出现的任何错误,我们不承担任何责任或义 务。

版权所有© 2021 Computational Mechanics Ltd.

俄罗斯计算力学有限公司保留所有权利。

联系方式

最新版的UM软件和相应的用户手册下载地址:

http://www.universalmechanism.com/en/pages/index.php?id=3.

若无法访问,请点击: <u>http://www.umlab.ru/en/pages/index.php?id=3</u>.

在使用过程中,读者如有任何报错、疑问和建议,请发送邮件至:

um@universalmechanism.com

UM总部

Computational Mechanics Ltd.

Vostochnaya str. 2-14, Glinischevo, Bryansk region, 241525, Russia

Phone, fax: +7 4832 568637

www.universalmechanism.com www.umlab.ru

UM中国

四川同算科技有限公司

四川省眉山市彭山区蔡山西路2号伟业广场1911室

办公电话: 028-38520556

公司网站: <u>www.tongsuan.cn</u>

电子邮件: <u>um@tongsuan.cn</u>

微信公众号

QQ 交流群

1.	UM EXPERIMENTS		1
2.	课程内	容	2
2.1	创建	SCANNING 项目	3
	2.1.1	新建项目	3
	2.1.2	加载模型	4
	2.1.3	重命名家庭组	4
	2.1.4	参数的层次结构	5
	2.1.5	设置模型参数	7
	2.1.6	设置初始条件	7
	2.1.7	设置终止条件	7
	2.1.8	设置保存变量	8
	2.1.9	受迫振动	9
2.2	运行	- 仿真1	2
2.3	结果	分析1	4
	2.3.1	单个工况的计算结果1	4
	2.3.2	统计图表1	7

1. UM Experiments

在工程中,经常需要进行大量的数值仿真,如:分析系统的动力学性能和灵 敏度以及寻找模型参数的最优解。UM Experiments 模块提供的 Scanning 高级 仿真工具可以实现。

Scanning 工具可以自动完成一系列数值仿真工况,并保存每个工况的计算 结果。因此,研究人员可以从繁琐枯燥的重复性手动操作工作中解放,既能节省 时间,又能避免不必要的错误。利用 Scanning 工具,研究人员可以统一设计好 仿真方案和工况,这些工况将自动地逐个运行。在进度条会显示已完成的工况数 目和预计还需要的计算时间。如果在批量仿真进行中突然断电,则已经完成计算 的工况的结果仍然保存在硬盘上,不会丢失,下次启动可以继续执行其它工况的 计算。

在进行后处理分析时,可以在绘图窗口显示任意一个已保存结果变量的时程曲线。Scanning 工具并不限定参数变量的总数,对于多变量计算,可以直接获得单变量响应曲线和多变量响应曲面。

总的计算规模取决于研究人员的具体设定,需要针对研究的问题,预先对计 算规模有所估计,不可盲目增加工况。当然每个工具都有他擅长的和不擅长的, 不可能解决所有问题。

2. 课程内容

本课程基于《UM 软件入门教程:从零开始》里的 Oscillator 模型,利用 Scanning 工具进行批量仿真。

首先,请找到本地的 Oscillator 模型,UM 软件自带的模型位于 {UM Data}\SAMPLES\TUTORIAL\oscillator 目录¹,模型如图 2.1 所示。

此外,读者可以阅读 UM 软件用户手册第六章,获取更多关于 UM Experiments 模块的介绍,({UM Data}\MANUAL\06 UM Experiments.pdf)²。

这里,我们也准备好了一个已设置好的 Scanning 模型,它位于 {UM Data}\SAMPLES\TUTORIAL\scan2 目录³。

Universal Mechanism 9

¹ 官方网站下载链接: <u>www.umlab.ru/download/90/oscillator.zip</u>

² 官方网站下载链接: <u>www.umlab.ru/download/90/eng/06_um_experiments.pdf</u>

³ 官方网站下载链接: <u>http://www.umlab.ru/download/90/scan2.zip</u>

2.1 创建 Scanning 项目

下面,我们利用弹簧-阻尼振动系统模型,进行自由振动的变阻尼系数计算 和受迫振动的变频率计算。

2.1.1 新建项目

- 1. 运行 UM Simulation 程序。
- 2. 选择菜单 Scanning | New project。
- 3. 在弹出对话框自定义项目的路径(包含项目名称),如图 2.2 所示。
- 点击 OK 和是(Y), 创建一个 Scanning 项目, 此时弹出 Scanning 项目 界面, 如图 2.3 所示。

Open folder for a new project of	scanning	×
Full path:		
ents\UM Software Lab\Universal Mecha	anism\9\My pr	ojects\Scan2
	ОК	Cancel

图 2.2 新建 Scanning 项目对话框

III Scan2 - scanning
General Alternatives Run Results
Directory: C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\8\My projects\Scan2
Status: No calculations done Comments

图 2.3 Scanning 项目界面

2.1.2 加载模型

- 1. 点击 Alternatives。
- 2. 点击按钮 。
- 3. 在弹出对话框选择 oscillator 模型(路径 C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\SAMPLES\TUTORIAL\)。

这样, oscillator 模型就加载到 Scanning 项目中,模型名称显示在左侧的 家庭组 Family of alternatives,模型参数列表显示在右侧,如图 2.4 所示。

Scan2 - scanning							
General Alternatives	Run	Results					
General Alternatives	Run	Results Initial conditions Hierarchy of par	Finish cond ameters	itions Tr	Variables ree of alternative	Integration Is Ic List of parameters Socialitator Soci	Tools dentifiers = 10 = 0 nega = 10 = 250 ngth = 0.4 u = 5
		图 2.4	1 加载模型				

2.1.3 重命名家庭组

一个 Scanning 项目可以添加多个模型,其每个模型为一个家庭组(Family), 下面进行重命名操作。

 在 Family of alternatives 列表区选中 oscillator, 点右键,选择菜单 Rename (或快捷键 F2)。

2. 输入新名称: Free vibrations。

Universal Mechanism 9

2.1.4 参数的层次结构

在本例中,我们将分析两类工况:自由振动和受迫振动。 我们将已加载的模型用于自由振动分析,研究阻尼系数对系统性能的影响。

- 1. 在模型参数列表区(图 2.4 右侧)点击参数符号 mu(阻尼系数)。
- 2. 弹出 Parameter values 窗口, 依次添加{0, 10, 20, 30, …, 100} 共 11 个参数值, 如图 2.5 所示。
- 点击 OK,回到 Scanning 项目界面。此时,窗口中部参数的层次结构 (Hierarchy of parameters)页面显示了新添加的参数 mu,位于 Group1,如图 2.6 所示。
- 4. 选中 Group1, 点右键, 重命名为 mu。

这样,我们就定义了11个仿真工况,接下来我们将进行其它仿真设置。

ł	Properties of ide	entifier	×
	Identifier: n	nu	
	Current value:	5	
_	Mode		
	List of values		
Г	0		Add
	-		<u></u>
	0	~	Delete
	20		
	30		
	40		
	50		
	70	~	
L			
	OK	Cancel	
	反っ	「心罢会粉店	
	줄 2.	5 反旦学奴阻	

Scan2 - scanning					
General Alternatives Run	Results				
+ 🗊 📭	Initial conditions Fi	inish conditions	Variables	Integration	Tools
Family of alternatives	Hierarchy of parameter	rs	Tree of alternative	ves Identifiers	
Caption				List of parameters 	
Free vibrations	✓ mu	0; 50; 60; 70; 80;	90; 100]	✓	ist 10 2 2ga = 10 250 10 10 10 10 10 10 10 10 10 10 10 10 10

图 2.6 参数的层次结构

2.1.5 设置模型参数

为了模拟自由振动,我们需要将模型中的刚体 Top 固定,把参数 a 设为 0 即 可实现。

- 1. 点击 Identifier。
- 2. 设置参数 a 为 0。

2.1.6 设置初始条件

- 1. 点击 Initial conditions。
- 2. 设置坐标 Coordinate | 1.1 为 0.1。

由于刚体 Brick 初始坐标很接近平衡位置,这里我们人为将其移动一定距离,以获得较大幅度的自由振动。

2.1.7 设置终止条件

我们需要为每个家庭组设置仿真终止条件,如图 2.7 所示。

终止条件的含义为: 当至少一个条件满足时即停止计算。

终止条件格式为:变量[条件]变量值。

可以使用变量向导创建的任何变量作为终止条件,软件缺省的终止条件为仿 真时间:

时间(Time)大于或等于10秒。

也就是说,一个家庭组里的所有工况仿真时间都为10秒。

1. 设置仿真时间为25秒,如图2.7所示。

备注:实际上可以设置任何变量作为结束仿真的判据,首先在变量向导里创建所 需变量,然后拖入终止条件页面的变量框即可。

General Alternatives Evolution Run Results +	Scan2 - scanning				- • •
Hierarchy of parameters Tree of alternatives Identifiers Initials Family of alternatives Finish conditions Variables Integration Tools Caption Image: Caption service of alternative service service of alternative service service service of alternative service serv	General Alternatives Evolu	ution Run Results			
Family of alternatives Integration Caption Image: Second and the secon	+ 🗊 🕩	Hierarchy of parameters Finish conditions	Tree of alternatives	Identifiers	Initials
Free vibrations Time Image: Solution set of the s	Family of alternatives	₽ 8	Tanabies	Integration	10015
	Caption Free vibrations	Time ··· >	 25 10 5 10 5 		

图 2.7 终止条件

2.1.8 设置保存变量

1. 点击 Variables。

这个页面用于存放需要保存计算结果的变量。

2. 点击按钮 将变量列表重命名为 Position。

下面我们来创建刚体 Brick 垂向位移变量,并拖入变量列表。

- 3. 选择菜单 Tools | Wizard of variables, 打开变量向导。
- 在 Linear variables 页面, 左侧选中刚体 Brick, 右侧设置位移分量
 Z。
- 5. 点击 与按钮创建变量,然后拖入 Position 变量列表。
- 6. 关闭变量向导。

至此,我们已经完成了自由振动家庭组工况的仿真设置,Scanning项目界面如图 2.8 所示。接下来,我们进行受迫振动家庭组工况的设置。

Scan2 - scanning				- • •
General Alternatives Evolu	ution Run Results			
+ 🗊 🕩	Hierarchy of parameters Finish conditions	Tree of alternativ Variables	ves Identifiers Integration	Initials Tools
Caption	- 8 ± ±	*		
Free vibrations	Position			
	Name Comment r:z(Brick) Coordinates of	of point (0,0,0) of body	/ Brick relative to Base0, SC	Base0, projecti
	r:z(Brick) Coordinates of point (based, projecti

图 2.8 保存变量结果

2.1.9 受迫振动

下面我们将第一个家庭组复制一次,设置阻尼系数为0,并设置不同的激励 频率值。当外部激励的频率接近系统固有频率时,将出现共振现象。

复制家庭组

- 在左侧家庭组列表,选中 Free vibration,点右键,选择 Duplicate family,这样就得到第二个家庭组(或点击 →),程序自动命名为 Free vibration (1)。
- 2. 将 Free vibration (1)重命名为 Resonance。

参数的层次结构

- 1. 先在左侧家庭组列表选中 **Resonance**,然后点击 **Hierarchy of parameters**。
- 2. 选中 mu 参数组,点右键,选择 Delete group of parameters,如图 2.9 所示。

Scan2 - scanning		
General Alternatives Run	Results	
General Alternatives Run Alternatives Run Family of alternatives Caption Free vibrations Resonance	Results Initial conditions Finish conditions Variables Hierarchy of parameters Tree of alternation Image: State of the	Integration Tools ives Identifiers List of parameters • 🕹 oscillator(1) > • • • • • • • • • • • • • • • • • •
	Delete parameter 	

图 2.9 删除参数组

- 3. 确认删除 **mu** 参数组。
- 4. 在右侧参数表点击参数符号 omega, 弹出 Properties of identifier 属性 界面, 如图 2.10 所示。
- 5. 选择 Loop 模式,并按图 2.10 所示设置参数值。点击 OK,这样就定 义了从 0 到 15 共 16 个参数值。
- 6. 重命名参数组为 omega。

Properties of identifier X	ć
Identifier: omega	
Current value: 10	
List of values O Loop	
Execute 16 🚺 iterations	
in interval from	
to 15 🔳	
Convert to list of values	
OK Cancel	

图 2.10 外部激励的频率

T 1	•	1	3.4	r 1	1	•	Δ
U	nıv	ersal	N	lec	har	ıısm	9

Resonance 家庭组的参数层次结构如图 2.11 所示。

Scan2 - scanning				
General Alternatives Evolu	ution Run Results			
+ ∰ Family of alternatives	Finish conditions Hierarchy of parameters	Variables Tree of alternati	Integration ves Identifiers	Tools Initials
Caption Free vibrations Resonance	omega omega [0; 1; 2; 3; 4; 5; -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15	; 6; 7; 8; 9; 10; 11; 12; 1:	3; 14; 15]	e e e e e e e e e e e e e e e e e e e

设置模型参数

- 1. 点击 Identifiers。
- 2. 修改参数 a 为 0.05, mu 为 0。

2.2 运行仿真

- 1. 点击 **Run**页面。
- 2. 确保之前的每一步操作都正确,那么日志窗口将提示 "Error not found",如图 2.12 所示。

III Scan2 - scanning		
General Alternatives Evolution Run Results		
🗑 🖻 🛃 🔳	Running processes	
Event log	Count of processes	2 🕃
A		
Error not found		
٠		
Run Stop Distributed calculations		
Turn off computer when running finit	shes	
Done 0% (0/27)		

图 2.12 运行 Scanning 项目

3. 点击 Run 按钮,开始批量仿真。

日志窗口会显示每个计算工况对应的参数和所耗时间,如图 2.13 所示。由于这个模型非常简单,自由度少,因此近乎1秒完成一个工况。

4. 待全部计算完毕,出现提示 "Calculation of project of scanning is over"。

III Scan2 - scanning			- • •
General Alternatives Evolution Run	Results		
		Running processes	
Event log			æ
Identifiers: mu=0	^	75% - Free vibrations; mu=40	
Experiment succeed		38% - Free vibrations; mu=50	
23.11.2015 - 12:49:20 Family of alternatives: Free vibrations Identifiers: mu=20 Experiment succeed			
23.11.2015 - 12:49:20 Family of alternatives: Free vibrations Identifiers: mu=30 Experiment succeed			
	4		
Run Stop	Distributed calculations	shes	
Done 14% (4/27)	Time left 56 sec		

图 2.13 批量仿真过程

Scanning 进行批量仿真时,支持多线程并行计算,即多个独立工况同时计算,线程总数取决于处理器(比如,英特尔 i5 处理器支持 4 线程,英特尔 i7 处理器支持 8 线程)。软件界面缺省显示最大线程数。如果计算机有其它程序在工作,可适当减少线程数。

2.3 结果分析

2.3.1 单个工况的计算结果

自由振动

1. 点击 Results | Families | Free vibrations 页面,如图 2.14 所示。

1	Scan2	- scannin	g								
	General	Alternative	es Run	Results							
	Families	Wizard of	graphs	Wizard of s	urfaces	Wizard of	tables	Fatigue	PBS ana	lysis	
Free vibrations Resonance											
	Hierard	hy	~	🚑 Experin	ents	^	Posit	ion			
	mu			····√ mu:	=0 =10		Nam	ne	Cor	nmen	nt
				- v mu	=20		r:z(Brick) Coordinates of point (0,0,				ates of point (0,0,0) of body Brick
				√ mu:	=30 =40	~					
	Index	mu	Dat	afile		^					
	√ 1	mu=0	\a	scillator\1.t	gr						
	√ 2	mu=10	\c	scillator \2.t	gr						
	√ 3	mu=20	\c	scillator \3.t	gr						
	√ 4	mu=30	\c	scillator\4.t	gr						
	√ 5	mu=40	\c	scillator\5.t	gr						
	√ 6	mu=50	\c	scillator \6.t	gr						
	√ 7	mu=60	\o	scillator \7.t	gr						
	√ 8	mu=70	\o	scillator \8.t	gr			<i>(</i>			
	√ 9	mu=80	\o	scillator \9. t	gr		Layo	off as abso	cissa		
	✓ 10	mu=90	\o	scillator\10.	tgr	~	Time				t
	L										

图 2.14 结果页面

我们来对比不同阻尼系数值对应的 Brick 刚体的垂向位移时程。

- 2. 选择主菜单 Tools | Graphical window, 打开一个绘图窗口。
- 在 Scanning 项目界面左侧选中 Free vibrations 家庭组的所有工况(右 键菜单 Select all 或用 Shift、Ctrl 键),如图 2.15 所示。

General Alternatives Run Results Families Wizard of graphs Wizard of surfaces Wizard of tables Fatigue PBS analysis Free vibrations Resonance						9	scanning	Scan2
Families Wizard of graphs Wizard of surfaces Wizard of tables Fatigue PBS analysis Free vibrations Resonance Visard of tables Fatigue PBS analysis					Results	es Run	Alternative	General
Free vibrations Resonance		tables Fatigue PBS analysis	ables	Wizard of	Wizard of surfaces	graphs	Wizard of	Families
V C Experiments					e	esonance	ations R	Free vib
Hierarchy		Position	Positio	^	Experiments	× 1	у	Hierard
mu mu=0 Name Comment		Name Comment	Name		✓ mu=0 ✓ mu=10			mu
····√ mu=20 r:z(Brick) Coordinates of point (0,0,0) of body Brick		r:z(Brick) Coordinates of point (0,0,0) of body Brick	r:z(Br		√ mu=20			
mu=40 V				~	√ mu=40			
Index mu Data file				^	ta file	Data	mu	Index
√ 1 mu=0 \oscillator\1.tgr √ 2 mu=10 \oscillator\2.tgr					oscillator\1.tgr oscillator\2.tgr	\o \o	mu=0 mu=10 mu=20	√ 1 √ 2
✓ 4 mu=30 Select all Ctrl+A					Select all Ctrl+A	S	mu=30	√ 4
✓ 5 mu=40 Run XVA					Run XVA	R	mu=40	√ 5 √ 6
✓ 7 mu=60 Clear results					Clear results	💽 C	mu=60	√ 7
✓ 8 mu=70 ✓ 9 mu=80 Show file in folder Lay off as abscissa		Lay off as abscissa	Lay of		Show file in folder	S	mu=70 mu=80	√8 √9
✓ 10 mu=90\oscillator\10.tgr	t	Time t	Time	~	oscillator\10.tgr	\o	mu=90	√ 10

图 2.15 全选工况

4. 在右侧变量列表,选中 Position 变量列表的 r:z(Brick)变量并拖入绘图 窗口,所有变阻尼系数工况下 Brick 垂向位移时程如图 2.16 所示。

图 2.16 不同阻尼系数下 Brick 的垂向位移时程

受迫振动

- 1. 再打开一个绘图窗口。
- 2. 点击 Results | Families | Resonance 页面。
- 3. 全选 16 个工况,并将 r:z(Brick)变量拖入绘图窗口,如图 2.17 所示。

图 2.17 受迫振动

2.3.2 统计图表

UM 提供了多个后处理工具,用于模型整体性能对比分析:统计图、统计表和响应曲面。

这里我们以统计函数标准差为例,分析受迫振动家庭组的仿真结果。

- 1. 点击 Results | Wizard of graphs 页面。
- 2. 在左侧选择 Resonance 家庭组。
- 3. 在左侧选择变量 **r:z(Brick)**。
- 4. 在左侧选择统计函数 Std_Dev (标准差)。
- 5. 在右侧图表区下方选择横坐标变量 omega。
- 6. 点击右侧图表区上方按钮♣。

这样,16个工况标准差的统计结果自动绘制成随频率值变化的曲线,如图 2.18 所示。由图可见,标准差最大值发生在 omega = 5 m/s 时。如果读者熟悉振动理论,明显可以看出的曲线与幅频特性非常相似。

图 2.18 标准差统计结果