

Getting started

UM 软件入门系列教程

(09)

四川同算科技有限公司 译

2021年3月

本教程介绍使用UM Automotive模块进行公路车辆动力学仿真的基本方法 和步骤。UM Automotive模块用于公路车辆动力学建模和仿真,如平顺性、操纵 稳定性和制动性。模块包含一系列公路车辆专用工具和算法,可以模拟轿车、越 野车、客车、货车、挂车、自卸车和铰接式列车等各种轮式车辆。

请读者在学习本课程之前务必先学习《UM软件入门系列教程01:多体系统 动力学仿真》,并熟悉UM软件的基本操作:新建模型,创建几何图形、刚体、 较和力元。

本例将直接利用软件自带的拉达汽车VAZ_2019模型进行若干标准试验工况的仿真,而对其详细建模过程不再赘述。UM软件自带了多种汽车和悬架模型,读者可从UM Input打开这些模型,了解其建模方法和元件参数。

本教程只是帮助用户快速熟悉UM Automotive模块的基本使用方法,有关更 深入的详细的理论和方法介绍请查阅用户手册第十二章。使用UM软件还可以建 立发动机、配气机构、离合器、万向节、变速器、差速器等机构(需配备UM Driveline模块),本例略。

请先运行**UM Input**或**UM Simulation**程序,选择菜单**Help** | **About**,在弹出窗口查看**UM Automotive**一栏是否为 "+"标记,若显示为 "-",则请重新申请试用或购买正版许可。

版权和商标

本教程仅供读者参考,不同的版本其界面可能有个别不同之处,我们会不定 期进行修订。对于本文档中可能出现的任何错误,我们不承担任何责任或义务。

版权所有© 2021 Computational Mechanics Ltd.

俄罗斯计算力学有限公司保留所有权利。

联系方式

最新版的UM软件和相应的用户手册下载地址:

<u>http://www.universalmechanism.com/en/pages/index.php?id=3</u>. 若无法访问,请点击: <u>http://www.umlab.ru/en/pages/index.php?id=3</u>. 在使用过程中,读者如有任何报错、疑问和建议,请发送邮件至:

um@universalmechanism.com

UM总部

Computational Mechanics Ltd.

Vostochnaya str. 2-14, Glinischevo, Bryansk region, 241525, Russia

Phone, fax: +7 4832 568637

www.universalmechanism.com www.umlab.ru

UM中国

四川同算科技有限公司

四川省眉山市彭山区蔡山西路2号伟业广场1911室

办公电话: 028-38520556

公司网站: <u>www.tongsuan.cn</u>

电子邮件: <u>um@tongsuan.cn</u>

微信公众号

QQ 交流群

1.	拉达汽车 VAZ 2019 动力学仿真	1
1.1	加载车辆模型	1
1.2	计算静平衡位置	2
1.3	转向盘转向试验	7
1.4	稳态转向特性试验	9
1.5	转向回正试验	
1.6	变换车道试验	
1.7	线性分析	

1. 拉达汽车 VAZ 2019 动力学仿真

本例模型位于本地目录{UM Data}\SAMPLES\automotive\vaz21_09,该车原 始模型由俄罗斯 Alexander Gorobtsov 教授使用 FRUND 软件创建。

1.1 加载车辆模型

- 1. 运行 UM Simulation 程序。
- 选择菜单 File | Open Object 或点击工具栏图标→,加载软件自带的拉达车辆模型{UM Data}\SAMPLES\automotive\vaz21 09。

图 1.1

1.2 计算静平衡位置

车辆系统动力学仿真计算一般都要求初始为静平衡位置,若将刚建好的模型 直接用于工况仿真,则在初始一段时间内会出现较强的瞬态波动。

用户使用 UM Simulation 程序可以为各个工况保存相应的配置文件,包括仿 真桌面的动画和绘图窗口布置、模型参数配置、求解器设置、轮胎模型和路面不 平度等。

本例模型已经预置了多个仿真工况的配置文件,我们可以直接调用。

 选择菜单 File | Load configuration | Equilibrium Test,加载静平衡位置 计算工况配置。

UM - Simulation - c:\users\public\documents\um software lab\universal mechanism\9\samples\ File Analysis Scanning Tools Windows Help

图 1.2

备注:

Load configuration	命令将读取以下配置	【 文件:	
EquilibriumTest.icf:	动画和绘图窗口;		
EquilibriumTest.xv:	初始条件;		
EquilibriumTest.par	: 模型参数配置;		
EquilibriumTest.car:	车辆和道路相关参	陵数。	

此时, 仿真桌面显示一个动画窗口和一个绘图窗口, 绘图窗口有四个变量, 分别对应四个轮胎的垂向力。

2. 选择菜单 Analysis | Simulation 或点击工具栏图标 ① 或按 F9 键,打开

仿真控制界面(Object simulation inspector)。

3. 定位到 Initial conditions 页面,此时大部分铰的坐标初始值都是 0。

Solver		Ide	entifiers Initial c	onditions	Object variables	altions Object variables XVA Information Road vehicle Tools				
Coordinate	s C	ons	traints on initial condit	ions						
28	(a)•	↔ ⊖ x=0	ν=0 <u></u> [±]						
/az21_09 -	副才	5.								-
	ŵ	1	Coordinate	Velocity	C	omment				^
1.1			0	0	C	ar.jCar body	1c			
1.2			0	0	C	ar.jCar body	2c			
1.3			0	0	C	ar.jCar body	3c			
1.4			0	0	C	ar.jCar body	4a			
1.5			0	0	C	ar.jCar body	5a			
1.6			0	0	C	ar.jCar body	ба			
1.7			0.167022302082	0	C	ar.jCar body	- Strut rod left 1c			
1.8			0	0	C	ar.jCar body	- Strut rod left 2a			
1.9			-0.0181748219339	0	C	ar.jCar body	- Strut rod left 3a			
1.10			0	0	C	ar.jCar body	- Strut rod left 4a			
1.11			0	0	C	ar.jStrut rod	left-Strut left 1c			
1.12			0.167042405756	0	C	ar.jCar body	- Strut rod right 1c			
1.13			0	0	C	ar.jCar body	- Strut rod right 2a			
1.14			-0.018189020368	0	C	ar.jCar body	- Strut rod right 3a			
1.15			0	0	C	ar.jCar body	- Strut rod right 4a			
1.16			0	0	C	ar.jStrut rod	right - Strut right 1	c		
1.17			0	0	C	ar.jCar body	- Stabilizer left 1c			
1.18			0	0	C	ar.jCar body	- Stabilizer left 2a			
1.19			0	0	c	ar.jCar body	- Rear-axle assemb	oly left 1c		
1.20			0	0	C	ar.jCar body	- Rear-axle assemb	oly left 2a		
1.21			0	0	C	ar.jCar body	- Rear-axle assemb	oly left 3a		
1.22			0	0	С	ar.jCar body	- Rear-axle assemb	oly left 4a		
1.23			0	0	C	ar.jRear-axl	e assembly left - Re	ar-axle assembly righ	nt 1a	
1.24			0	0	C	ar.jRear-axl	e assembly left - Re	ar-axle assembly righ	nt 2a	
1.25			0	0	C	ar.jRear-axl	e assembly left - Re	ar-axle assembly righ	it 3a	
1.26			0	0	C	ar.jStabilizer	lett - Stabilizer righ	t la		
1.27			-0.00155778042186	0	c	ar.jStabilizer	left - Stabilizer righ	t 2c		~
Message	2	dx	= 0.1 🔟 da	= 0.1						
		Inte	egration		Message	2		Close		

 2. 定位到 Road vehicle | Tests 页面,这里有一组标准的工况试验(详细介 绍请见用户手册第 12 章),当前已选择 Equilibrium test。

图 1.4

5. 转到 Solver 页面,查看求解设置,本次计算时长为 3 秒。

6. 点击 Integration 按钮或按 F9 键,开始仿真,如图 1.6 所示,四个垂向 力都趋于平稳,可认为系统达到平衡状态。

- 7. 计算完毕,点击确定,在 Pause 界面点击 Save,保存当前时刻所有铰的 坐标和速度文件 Equilibrium.xv 到模型目录。
- 8. 点击 Interrupt,中断仿真,回到仿真控制界面。
- 转到 Initial conditions 页面,点击图标 →,读取刚才保存的文件 Equilibrium.xv。

10. 点击图标 №0,将速度列清零,只保留坐标列,如图 1.7 所示。

Solver		Id	entifiers Initial cor	ditions Object vari	ables XVA Information Road vehicle Tools				
Coordinate	s (Cons	traints on initial condition	ns					
- 8		a	+ - x=0	/=0 <u> </u>					
az21_09 ·	副	本.				-			
	ŵ	1	Coordinate	Velocity	Comment	^			
1.1			0.00461784836609	0	Car.jCar body 1c				
1.2			0.000150401357644	0	Car.jCar body 2c				
1.3			0.00737709409804	0	Car.jCar body 3c				
1.4			5.27274231556E-5	0	Car.jCar body 4a				
1.5			-0.006184232678	0	Car.jCar body 5a				
1.6			-0.000136587922767	0	Car.jCar body 6a				
1.7			0.000537432304201	0	Car.jCar body - Strut rod left 1c				
1.8			-0.0114317527206	0	Car.jCar body - Strut rod left 2a				
1.9			0.00581348317171	0	Car.jCar body - Strut rod left 3a				
1.10			0.0313606178843	0	Car.jCar body - Strut rod left 4a				
1.11			0.116644394785	0	Car.jStrut rod left-Strut left 1c				
1.12			0.000545607353885	0	Car.jCar body - Strut rod right 1c				
l. 13			0.0119370257951	0	Car.jCar body - Strut rod right 2a				
1.14			0.00334768783695	0	Car.jCar body - Strut rod right 3a				
1.15			-0.0188959364196	0	Car.jCar body - Strut rod right 4a				
1.16			0.116402007524	0	Car.jStrut rod right - Strut right 1c				
1.17			0.00163745788452	0	Car.jCar body - Stabilizer left 1c				
1.18			-0.0614246376793	0	Car.jCar body - Stabilizer left 2a				
1.19			5.25788540567E-8	0	Car.jCar body - Rear-axle assembly left 1c				
1.20			-0.000276659361617	0	Car.jCar body - Rear-axle assembly left 2a				
1.21			0.0313943968831	0	Car.jCar body - Rear-axle assembly left 3a				
1.22			4.89083014309E-6	0	Car.jCar body - Rear-axle assembly left 4a				
1.23			0.000541543831926	0	Car.jRear-axle assembly left - Rear-axle assembly right 1a				
1.24			-5.80294035223E-5	0	Car.jRear-axle assembly left - Rear-axle assembly right 2a				
1.25			7.58812932735E-5	0	Car.jRear-axle assembly left - Rear-axle assembly right 3a				
1.26			-0.000496527895362	0	Car.jStabilizer left - Stabilizer right 1a				
1.27			3.47986956334E-8	0	Car.jStabilizer left - Stabilizer right 2c	~			
Messag	e	dx	= 0.1 🖬 da=	0.1 🔜					

图 1.7

 点击图标^Ⅰ,保存文件 Equilibrium.xv 到模型目录,覆盖原有文件,此 为仿真所需要的初始条件文件。

1.3 转向盘转向试验

- 1. 点击 Close,关闭仿真控制界面。
- 2. 选择菜单 File | Load configuration | SteeringWheelRotation,加载转向 盘转向试验工况配置,仿真桌面配置了一个动画窗口和两个绘图窗口。
- 3. 选择菜单 Analysis | Simulation 或点击工具栏图标 ♥ 或按 F9 键,打开

仿真控制界面(Object simulation inspector)。

2. 定位到 Road vehicle | Tests 页面,确保当前选择的仿真工况为 Steering wheel rotation。

Solver Identifiers Initial conditions Object variables XVA Information Road vehicle Tools Inits Image: Solver Inits Tires Options and parameters Tools Identification Tests Transmission Resistance Scanning Itering wheel rotation Variables Results Image: Solver Image: Solver Image: Solver Image: Solver Name Value Value Amplitude (rad) 3 Image: Solver Image: Solver Image: Solver Frequency (Hz) 0.25 Image: Solver Image: Solver Image: Solver Image: Solver	Solver Identifiers Initial conditions Object variables XVA Information Road vehicle Tools Image: Tree Options and parameters Tools Identification Tests Transmission Resistance Scanning Steering wheel rotation Variables Results Variables Results Variables	bject sim	ulation insp	ector							
Inits Tires Options and parameters Tools Identification Tests Transmission Resistance Scanning Steering wheel rotation Variables Results Value Value <td< td=""><td>Image: Contract of the second seco</td><td>Solver</td><td>Identifie</td><td colspan="2">ers Initial conditions</td><td colspan="2">onditions Object variables</td><td>XVA</td><td>Information</td><td>Road vehicle</td><td>Tools</td></td<>	Image: Contract of the second seco	Solver	Identifie	ers Initial conditions		onditions Object variables		XVA	Information	Road vehicle	Tools
Initis Tires Options and parameters Tools Identification Tests Transmission Resistance Scanning Steering wheel rotation Valuels Results Value	Units Tires Options and parameters Tools Identification Tests Transmission Resistance Scanning Steering wheel rotation Parameters Variables Results Numeric parameters Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	≥ - E	- 1								
Steering wheel rotation Parameters Variables Results Numeric parameters Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Steering wheel rotation Parameters Variables Results Numeric parameters Name Value Amplitude (rad) S Frequency (Hz) 0.25	Units Tir	es Options	and parameters	Tools	Identification	Tests	Transmission	Resistance	Scanning	
Variables Results Numeric parameters Value Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Parameters Variables Results Numeric parameters Value Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Steering w	heel rotation								\sim
Numeric parameters Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Numeric parameters Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Parameter	s Variables	Results							
Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Name Value Amplitude (rad) 3 Frequency (Hz) 0.25	Numeric p	arameters								
Amplitude (rad) 3 Frequency (Hz) 0.25	Amplitude (rad) 3 Frequency (Hz) 0.25	Name		Value							
Frequency (Hz) 0.25	Frequency (Hz) 0.25	Amplitude	e (rad)	3							
		Frequence	y (Hz)	0.25							
				_	T.		5 4				
							<u>٤</u> 1.4	9			

5. 点击 Integration,开始仿真,仿真过程和结果如图 1.10 和图 1.11 所示。

图 1.10

- 6. 依次点击确定、Interrupt,中断当前工况仿真。
- 7. 点击 Close,关闭仿真控制界面。

1.4 稳态转向特性试验

- 1. 选择菜单 File | Load configuration | OpenLoopCircle,加载稳态转向特性试验工况配置,仿真桌面配置了一个动画窗口和两个绘图窗口。
- 选择菜单 Analysis | Simulation 或点击工具栏图标 或按 F9 键,打开 仿真控制界面(Object simulation inspector)。
- 3. 定位到 Road vehicle | Tests 页面,确保当前选择的仿真工况为 Open loop steering。点击 Steer angle plot 下方的图标☑,可查看当前定义的转向 盘转角时程曲线,如图 1.12 所示。

4. 点击 Integration,开始仿真,仿真结果如图 1.13 所示,车的行驶路径 为圆形。

备注:

在绘图窗口图表区点右键,选择 Options,在 Axles | Style 页面勾选 Equal scales,可设置横轴和纵轴为等比例。

在绘图窗口图表区点**右键**,选择 Show all,可将曲线自动缩放调节到适合窗口大小。

 :x(Car.Car body) - Coord :v(Car.Car body) - Coord	inates of point (0,0,0) of bo	ndy Car.Car body relative to Base0, SC Base0, projection X	
-;(caca. 50dy) - coord			
		14	
		Window parameters X	
		Window Axes Design Frequency filter Statistics	
		Style Marking Legend	
		✓ Equal scales I oparithmic scale for X-axis	
		Logarithmic scale for Y-axis	
		Show grid	
		✓ Additional scale division	
		Hide X values	
		Hide Y values	
		Grid style	
		O solid	
		Interval for X-values	
	\perp		
	X	<	
		Current options - Default options	
			×
	4	OK Cancel	

图 1.13

- 5. 依次点击确定、Interrupt,中断当前工况仿真。
- 6. 点击 Close,关闭仿真控制界面。

1.5 转向回正试验

- 1. 选择菜单 File | Load configuration | WheelTakeOff,读取转向回正试验 工况配置,仿真桌面配置了一个动画窗口和一个绘图窗口。
- 2. 选择菜单 Analysis | Simulation 或点击工具栏图标 可按 F9 键,打开

仿真控制界面(**Object simulation inspector**)。

 定位到 Road vehicle | Tests 页面,确保当前选择的仿真工况为 Open loop steering,并且 Terminal control 选项为勾选状态。

Solver	Identifiers	Initial co	nditions	Object va	ariables	XVA	Information	Road vehicle	Tools	
⇒ • E	- 1									
Inits Tire	es Options ar	nd parameters	Tools	Identification	Tests	Transmission	Resistance	Scanning		
Open loop s	teering									\sim
arameters										
Longitudii Neutra	nal motion mode al nst				OF	Profile				
Control ty	ype									_
			۲	File				ier		
Steer and	gle plot Users\Public\Do force	cuments\UM So	oftware L	ab\Universal Me	echanism	\8\SAMPLES\Au	utomotive\vaz	21_09\wheeltakeoff	.ols"	<u>a</u>
	of traction forc	e								20
	Integration				Message			Close		
					_					

备注:

勾选 Terminal control 表示在给定的转向盘转向角曲线终了时刻(如图 1.15 所示),驾驶员突然双手放开,转向盘和转向轮会逐渐自动回正。

4. 点击 Steer angle plot 下方的图标,可查看当前定义的转向盘转角时程 曲线,如图 1.15 所示。

- 6. 依次点击确定、Interrupt,中断当前工况仿真。
- 7. 点击 Close,关闭仿真控制界面。

1.6 变换车道试验

- 1. 选择菜单 File | Load configuration | 2sManoeuvre, 读取变换车道试验工 况配置, 仿真桌面配置了一个动画窗口和三个绘图窗口。
- 2. 选择菜单 Analysis | Simulation 或点击工具栏图标 ❶ 或按 F9 键,打开

仿真控制界面(Object simulation inspector)。

3. 定位到 Road vehicle | Tests 页面,确保当前选择的仿真工况为 Test with driver,这是一种闭环试验,包括预置的行进路径和驾驶员控制模型。

Solver	Identifiers	Initial condition	s Object va	riables	XVA	Information	Road vehicle	Tools	
PI	_ R.								
	i 1÷i								
nits Tires	Options and p	oarameters Tools	Identification	lests	Transmission	Resistance	Scanning		
est with driver	•								~
Parameters \	/ariables								
Longitudinal r	notion mode								
○ Neutral		(● v=const			○ Profile			
Driver model	MacAda	am							\sim
Use irregula	arities								
Test sector	profile								
Macro geomet	ry file								
C:\Users	Public Docume	nts\UM Software L	ab \Universal Mech	anism\8	\car\macrogeon	netry\2s.mgf			<u>i</u>
Test section fi	e								
⊡									2
Traction force	e								
Limits of t	raction force								
24									2
Maria			Set default	control	parameters				
Nome	meters	Value							
Desident		1							
Preview time	, s dolavi o	-							
Neuromuseul	e ueldy, s	0.1							
Number of a	arıdg, s	0.1							
Number of co	onu oi steps	3							
	Integration		٩	/lessage			Close		
	and groups and an			-					

4. 点击 Macro geometry file 下面的图标,可以查看目标路径(水平面)。

图 1.18

5. 点击 Integration,开始仿真,仿真结果如图 1.19 所示。

Universal Mechanism 9

- 6. 依次点击确定、Interrupt,中断当前工况仿真。
- 7. 点击 Close,关闭仿真控制界面。

1.7 线性分析

- 1. 选择菜单 File | Load configuration | Linear Analysis, 加载线性分析工况 配置, 仿真桌面配置了一个动画窗口。
- 2. 选择菜单 Analysis | Static and linear analysis 或点击工具栏图标 2. 打

开静力和线性分析工具。

3. 点击按钮 , 计算出系统的各阶固有频率 (无阻尼)。

Fauilib	rium Freque	encies/Eigenvalue	Root locu	s Linear vibrations	Identifiers	Initial conditions	Ontions	
V Fre Metho La	equencies a od of analysis nczos Algorit r of frequen	and modes s thm © QR algori cies 69	thm	Eigenvalues Use zero velocitie Skip damping mat Frequency/Damping Sort by: frequency	rix ratio			
1	f (Hz)		^					
2	1.50786							
3	1.64476							
4	1.64538							
5	2.00277							
6	2.76188							
7	3.18895							
8	4.24284							
9	5.03268							
10	5.03678							
11	5.35406							
12	5.40995							
13	5.86845							
14	6.3729		~					
Animat	ion of modes	S						

图 1.21

在列表中选中某阶固有频率,点击工具栏按钮▶,此时动画窗口则会显示相应振型,可通过下部的两个滑块调节振动的幅值和速率(动画效果)。

图 1.22

5. 勾选 Eigenvalues,再点击按钮 ,可以计算得到考虑系统阻尼的各阶 频率和阻尼比,如图 1.23 右侧所示。

Equilit	orium Frequ	encies/Eigenvalues	Root locu	is Lir	ear vibrations	s Identifiers	Initial conditions	Options	
✓ Fr	equencies a	and modes		🖂 Eig	genvalues				
Meth	nod of analysi	S		🗹 Us	e zero velocit	ies			
OL	anczos Algori	thm 💿 QR algorit	hm	Sk	ip damping ma	atrix			
Numb	er of frequen	cies 69	•/	Freq	uency/Dampin	ng ratio			
			_						
				Sort	by: mequency		1		
					f (Hz)	Beta(%)/r			
	f (Hz)		~	1	1.36788	18.327			
1	1.36606			2	1.51076	7.993			
2	1.50786			3	1.64289	1.697			
3	1.64476			4	1.64488	1.603			
4	1.64538			5	1.98926	11.279			
5	2.00277			6	2.76638	5.705			
6	2.76188			7	3.21323	1.786			
7	3.18895			8	4.25477	5.292			
8	4.24284			9	4.87289	24.999			
9	5.03268			10	4.87676	25.025			
10	5.03678			11	5.35023	5.173			
11	5.35406			12	5.40301	5.253			
12	5.40995			13	5.92234	45.595			
13	5.86845			14	6.81345	41.790			
14	6.3729			15	7.39775	7.909			
			¥	16	7.41338	7.550			
Anima	ation of mode	S							

图 1.23