universal mechanism

UM培训教程

Computational Mechanics Ltd. 四川同算科技有限公司

首次发布: 2017年11月

最新修订: 2021年03月

Euromech Colloquium, 2008, Bryansk, Russia

UM Workshop, 2018, Bryansk, Russia

UM User Meeting, 2018, Pengshan, China

UM User Meeting, 2018, Pengshan, China

1.		认识 UM 软件	1 -
	1.1	软件简介	1 -
	1.2	模块与功能	5 -
	1.3	学前准备工作	7 -
2.		多体系统动力学建模与仿真	8 -
	2.1	实例一:地球仪	8 -
		2.1.1 建模	9 -
		2.1.1.1 新建模型	9 -
		2.1.1.2 底座建模	11 -
		2.1.1.3 支架建模	16 -
		2.1.1.4 球体建模	22 -
		2.1.2 仿真	28 -
		2.1.2.1 进入仿真程序	28 -
		2.1.2.2 设置求解参数	29 -
		2.1.2.3 设置初始条件	30 -
		2.1.2.4 执行仿真计算	31 -
		2.1.2.5 修改初始条件	32 -
		2.1.2.6 再次进行仿真	33 -
		2.1.2.7 卸载当前模型	33 -
	2.2	实例二:四连杆机构	34 -
		2.2.1 建模	35 -
		2.2.2 仿真	43 -
	2.3	实例三:椭圆规	48 -
		2.3.1 建模	49 -
		2.3.2 仿真	55 -
	2.4	实例四:刚柔耦合系统	60 -
		2.4.1 准备柔性体	61 -
		2.4.2 刚柔耦合系统建模	65 -
		2.4.3 动力学仿真	72 -
	2.5	实例五:自动控制系统	79 -
		2.5.1 机械系统建模	80 -
		2.5.2 控制系统建模	83 -
		2.5.3 动力学仿真	86 -
3.		轨道交通系统动力学建模与仿真	92 -
	3.1	铁路交通	92 -
		3.1.1 多刚体车辆动力学建模	93 -
		3.1.1.1 刚体与铰	93 -
		3.1.1.2 一系悬挂	97 -
		3.1.1.3 二系悬挂	101 -
		3.1.1.4 整车装配	106 -
		3.1.2 多刚体车辆动力学仿真	110 -
		3.1.3 构建刚柔耦合车辆系统	118 -

目 录

3.2	单轨交:	通	122 -
	3.2.1 跨	座式单轨车辆动力学建模	123 -
	3.2.1.1	刚体与铰	123 -
	3.2.1.2	悬挂力元	129 -
	3.2.1.3	整车装配	134 -
	3.2.2 跨	座式单轨车辆动力学仿真	138 -
3.3	磁浮交	通	147 -
	3.3.1 高	速磁浮车辆动力学建模	148 -
	3.3.1.1	刚体与铰	148 -
	3.3.1.2	悬挂力元	152 -
	3.3.1.3	加速度传感器	158 -
	3.3.1.4	磁浮力元	161 -
	3.3.1.5	整车装配	163 -
	3.3.2 高	速磁浮车辆动力学仿真	167 -

1. 认识 UM 软件

1.1 软件简介

Universal Mechanism,简称 UM,是一款来自俄罗斯的大型通用多体系统动力 学仿真分析软件,既能模拟多刚体系统,又能模拟多柔体(刚柔耦合/混合)系统。 UM 软件提供了一系列用于机械、铁路、单轨、磁浮、汽车、履带车、油气钻井、 航空航天、核工业和机器人等行业的专业模块和工具。

UM 软件的创始人是俄罗斯数学家、物理学家和计算科学家德米特里•波戈列 洛夫教授(Prof. Dmitry Pogorelov)。他于 1979 年从莫斯科大学数学力学系毕业, 获得理论力学博士学位,其导师是俄罗斯科学院院士、国际宇航科学院院士、洪堡 奖金获得者 Vladimir Beletskiy 教授(1930-2017)。他曾在德国斯图加特大学访学多 年,回俄后在布良斯克国立技术大学(Bryansk State Technical University,又译作 布良斯克国立理工大学、布良斯克国立工程工艺大学)任教至今,主持创建了计算 力学实验室(www.universalmechanism.com, www.umlab.ru),并任首席科学家。

UM 软件发展历程:

- 1985 年: 启动开发计划;
- 1989年:发布 UM 1.0,用于一般多刚体系统动力学计算;
- ●1991年: 增加子系统功能, 开始研发铁路车辆模块;
- 1993 年: 增加铁路车辆模块;
- 1998 年:开始用于 Windows 系统;
- 2003 年:发布 UM 2.0,增加多变量计算模块和并行计算模块;
- 2004 年: 增加刚柔耦合分析模块, 开始研发履带车辆模块;
- 2005 年:发布 UM 3.0,增加一维列车纵向动力学模块和散粒体模块;
- 2006 年:发布 UM 4.0,增加三维列车动力学模块、公路车辆模块、轮轨磨 耗模块、履带车辆模块和控制模块;
- 2009 年:发布 UM 5.0,增加三维自动接触模块;
- 2010年,发布 UM 6.0,开始研发铁路车桥耦合模块;
- 2011年: 增加铁路车桥耦合模块;
- 2012 年:发布 UM 7.0,增加车轮滚动接触疲劳模块和单轨列车模块;
- 2015年: 增加传动系模块;
- 2016 年:发布 UM 8.0, 增加柔性轨道和柔性轮对模块, 开发了 CONTACT 接口;
- 2017年: 增加磁浮模块,柔性轨道拓展到单轨和磁浮;
- 2018年: 单轨列车和磁浮列车支持外部导入柔性轨道梁;

- 2019年:全新的车轮磨耗及滚动接触疲劳分析工具;
- 2020年:全新的图形内核、增加场景模块;
- 2021 年:发布 UM 9.0,全新的钢轨磨耗及滚动接触疲劳分析工具、增加 气动模块;
-

图 1-1 UM 软件开发核心团队

图 1-2 计算力学实验室

РОССИЙСКАЯ ФЕДЕРАЦИЯ

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (POCIIATEHT)

СВИДЕТЕЛЬСТВО

Об официальной регистрации программы для ЭВМ

№ 2001611072

На основании Закона Российской Федерации "О правовой охране программ для электронных вычислительных машин и баз данных", введенного в действие 20 октября 1992 года, Российским агентством по патентам и товарным знакам выдано настоящее свидетельство об официальной регистрации программы для ЭВМ

Универсальный механизм (УМ)

Правообладатель(ли):

Погорелов Дмитрий Юрьевий (RU)

Автор(ы):

Погорелов Дмитрий Юръевий (RU)

Страна: Российская Федерация

по заявке № 2001610377, дата поступления: 29 марта 2001 г.

Зарегистрировано в Реестре программ для ЭВМ

г. Москва, 22 августа 2001 г.

Tenepasusarii gapermep May 19 Keprusus

图 1-3 UM 软件著作权登记证书

图 1-5 UM Simulation 仿真界面

1.2 模块与功能

UM 现有模块列表及功能简介见表 1-1。

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I-I UM	
序 号	<b>主模块I</b> <i>附加工具</i> <b>I</b> 独立子模块	中文名称	备注
1	UM Base	基础模块	必选模块
1.1	UM Base/Control Panel	交互式控制仿真工具	需要模块1
1.2	UM Base/Training Ground	履带车辆三维场地工具	需要模块1和4
1.3	UM Base/Ride Comfort	<i>车辆平稳性与舒适度工 具</i>	需要模块1和3或 4/5/6/7
2	UM Subsystems	子系统模块	需要模块1
3	UM Automotive	公路车辆模块	需要模块 2
3.1	UM Automotive/Truck And Trailer	重型卡车 PBS 分析工具	专供澳大利亚用户
4	UM Tracked Vehicle	履带车辆模块	需要模块 2
5	UM Monorail Train	单轨车辆模块	需要模块 2
6	UM Maglev	磁浮车辆模块	需要模块 2
7	UM Loco	铁路车辆模块	需要模块 2
7.1	UM Loco/Track Quality Estimation	轨道质量分析工具	专供俄罗斯用户
7.2	UM Loco/Multipoint Contact Model	轮轨多点接触模型	需要模块 7
7.3	UM Loco/CONTACT add-on Interface	CONTACT 程序接口	需要模块 7.2 和 CONTACT add-on to UM
7.4	UM Loco/Wheel Profile Wear Evolution	车轮型面磨耗分析工具	需要模块 7.2
7.5	UM Loco/Rail Profile Wear Evolution	钢轨型面磨耗分析工具	需要模块 7.2 和 14
8	UM Train	一维列车模块	需要模块 2
9	UM Train 3D	三维列车模块	需要模块7和8
10	UM Flexible Wheelset	柔性轮对模块	需要模块 7 和 16
11	UM Drilling	钻柱动力学模块	尚未发布
12	UM Driveline	传动系模块	需要模块 1
13	UM Pneumatic Systems	气动模块	需要模块 1
14	UM Experiments	多变量计算模块	需要模块 1

www.tongsuan.cn





序 号		中文名称	备注
14.1	UM Experiments/Cluster	分布式并行计算工具	需要模块 14
15	UM Control	控制模块	几个相互独立的子模块
15.1	UM Control/Matlab Import	Matlatb 导入子模块	需要模块1
15.2	UM Control/Matlab CoSimulation	Matlab 联合仿真子模块	需要模块1和23
15.3	UM Control/User-Defined Routines	用户自定义控制系统子 模块	需要模块1
15.4	UM Control/Block Editor	控制系统编辑器子模块	需要模块1
15.5	UM Control/SimInTech Import	SimIntech 导入子模块	专供俄罗斯用户
15.6	UM Control/SimInTech Cosimulation	SimIntech 联合仿真子 模块	专供俄罗斯用户
16	UM FEM	刚柔耦合模块	需要模块 2
16.1	UM FEM/Vehicle-Bridge Interaction	铁路车桥耦合分析工具	需要模块 7 和 16
16.2	UM FEM/Monorail Track	单轨车桥耦合分析工具	需要模块 5 和 16
16.3	UM FEM/Maglev Track	磁浮车桥耦合分析工具	需要模块6和16
17	UM Ballast	散粒体模块	需要模块 2
18	UM Durability	疲劳耐久性分析模块	需要模块 16
18.1	UM Durability/Loco	<i>机车疲劳耐久性分析工</i> <i>具</i>	专供俄罗斯用户
18.2	UM Durability/Carriage	<i>客车疲劳耐久性分析工 具</i>	专供俄罗斯用户
18.3	UM Durability/FreightWagon	<i>货车疲劳耐久性分析工</i> <i>具</i>	专供俄罗斯用户
19	UM 3D Contact	三维接触模块	需要模块1
20	UM CAD Interfaces	三维设计软件接口模块	需要模块1
21	UM RCF Wheel	车轮滚动接触疲劳模块	需要模块 7.4
22	UM RCF Rail	钢轨滚动接触疲劳模块	需要模块 7.5
23	ИМ СОМ	第三方软件支持模块	需要模块1
24	UM Flexible Railway Track	铁路柔性轨道模块	需要模块 7 和 16
25	UM Scene	三维场景模块	需要模块1
26	UM Quick Track	铁路轨道几何模块	需要模块7或8
27	UM Sensors	传感器模块	需要模块 3 和 25
28	UM Video Flow	视频流模块	需要模块 27

www.tongsuan.cn





# 1.3 学前准备工作

- 1) 加入 UM 用户 QQ 交流群: 262743795,在群文件里下载最新版软件安装 包和教程等资料,如下载不成功,可联系管理员单独发送。
- 关注微信公众号:同算科技,及时获取 UM 软件动态,通过微文目录或 关键词获得常见问题的详细解答。





QQ 交流群

微信公众号

- 3) 向同算科技微信公众号发送消息:安装或 000,可查看安装方法。
- 4) 在 Windows 7/8/10 系统上安装 UM 软件, 自 8.3.3.4 起, UM 只发布 64 位版本, 不再提供 32 位版本程序。
- 5) 首次安装 UM 软件可直接使用 30 天/600 次,之后可以申请延长试用期。 向同算科技微信公众号发送消息:license 或 001,可<u>查看申请方法</u>。
- 6) 使用过程中有任何问题可发送电子邮件(如果是具体模型的问题,请将 整个模型文件夹及其调用的文件一起打包)至邮箱: <u>tongsuan@qq.com</u>。
- 7) 在学习建模之前,请务必先从 QQ 群的 UM 学习资料文件夹里下载 "UM 培训教程.rar",并解压到本地计算机的 D 盘(本教程里模型的缺 省路径为"D:\UM 培训教程")或其他位置,这里包含了本套教程的全 部模型及素材。若无法下载或文件损坏,请私信管理员。
- 8) 本教程使用 UM 9.1.1.1 版本, UM 各个版本的界面和基本操作差异不 大,仅在个别地方略有不同。
- 本教程循序渐进,分析的模型从简单到复杂,对基本操作的讲解从详细 到简略,请读者务必顺序阅读,夯实基础。
- 10) 本教程旨在引导用户快速入门,熟悉 UM 软件建模和仿真的基本方法和 流程,具体的数学和力学知识及计算原理请仔细阅读相关章节的帮助文 档以及专业教科书。
- 11) 本教程中所有模型的参数系自编,并不对应实际的物理原型,不可直接 用于科学和工程研究。
- 12) 此外, UM 软件自带了很多例子, 值得学习借鉴, 建议读者一一浏览。





# 2. 多体系统动力学建模与仿真

## 2.1 实例一:地球仪



#### 图 2-1 地球仪模型

图 2-1 所示为一个常见的地球仪模型,该模型由三个刚体(底座、支架、球 体)组成。惯性参考系原点位于**球体**几何中心,红色为X轴,绿色为Y轴,蓝 色为 Z 轴。其中底座固定在地面,没有自由度,支架具有绕底座 X 轴转动的自由 度,**球体**具有绕**支架**Z轴转动的自由度,因此系统共有两个自由度。 本例用到的模块: UM Base。





#### 2.1.1 建模

王 🏙 🕅 🖳 🔩 🤫

#### 2.1.1.1 新建模型

图 2-2

2)选择主菜单 File → New object,新建一个 UM 模型,缺省名称为 UmObj0。这时出现 UM Input 建模主窗口,左侧上部是模型树(层次结构),下部是参数表(参数化建模),右侧为交互界面(输入和修改模型 数据),中间为动画窗口(显示三维模型),如图 2-3 所示。左侧模型树 选中的对象决定了动画窗口和交互界面显示的内容,当前模型没有任何 对象,因此只显示了总体坐标系(惯性参考系,Base0 坐标系),辅助网 格缺省位于 X-Y 平面。



图 2-3

www.tongsuan.cn





- 3) 动画窗口顶部有一个工具栏,用于视图操作,可进行缩放、平移和转动,请读者尝试每个按钮的功能。用鼠标和键盘也可直接调整视图:按下左键并移动鼠标为转动操作,同时按下左键和 CTRL 键并移动鼠标为平移操作,滑动鼠标滚轮或同时按下左键和 SHIFT 键并移动鼠标为缩放操作。
- 4)选择主菜单 File → Save as...,将模型另存为,在弹出窗口删除缺省路径,直接输入包含模型名称(万向地球仪)的模型路径 "D:\UM 培训教程\我的 UM 模型\地球仪",当然也可通过按钮 → 选择其他路径,如图 2-4。

	Save as		×	
	Path (including object n	ame):		
	D:\UM培训教程\我的	M模型\地球仪	<b>Z</b> ~	
		Save	Cancel	
	图	2-4		
5) 点击按钮 Save Confirmation	→ <b>是(Y)</b> ,确定	在当前目录创	建一个 UM	模型。 ×
? Cre	ate new directory D:\I	JM培训教程\我的U	M模型\地球仪?	
		是(Y)	否(N)	
		2-5	₩ ₩1 ↓₩ ₩1→	
<ol> <li>这样,我们就包 本 文件 本 夕彩</li> </ol>	们建了一个名为 如此为 INA 的模型	• <b>地球仪</b> ″ 的母	灵型,	可应一个义件
关,又什天石和 "chiest hmn"	小叩入 UM 的候望 西个文件 加区	ビ石 你 , 又 什 켜 し 2 6 昕 云   市	EE有 mp 新考县檔刊的	ul.ual 和 5动力学描述文
件(用于计算)	,后者是模型缩	略图(用于预	」在定候空口 览)。	的刀子油处义
此电脑 >	Data (D:)	∥教程 → 我的UN	/模型 > 地球	Ŕ
input.c	lat object.b	mp		

图 2-6





2.1.1.2 底座建模

1) 选择主菜单 Edit → Read from file,定位到路径 "D:\UM 培训教程\几何 素材\地球仪",选中底座.img,点击按钮打开,如图 2-7 所示。

Read	element				×
$\leftarrow \  \  \rightarrow$	<ul> <li>个 🦲 « UM培训</li> </ul>	∥教程 → 几何素材 → 地	球仪 ~ ひ		
组织 ▼	新建文件夹				• 🔳 🕐
*	名称	^	修改日期	类型	大小
~	ள 底座.img		2020/5/7 11:25	UM Image	2 KB
	畸 球体.img		2020/5/7 11:25	UM Image	5 KB
	n 支架.img		2020/5/7 11:25	UM Image	2 KB
	文件名(N):	底座.img		打开(O)	~ 取消

图 2-7

2) 这样,我们就导入了地球仪底座的几何图形 (Images),如图 2-8 所示。 导入几何图形的目的是增强模型可视化效果,它并不参与动力学计算。



图 2-8





3) 选中左侧模型树中的 Bodies, 然后在右侧交互界面点击按钮+, 如图





图 2-9

4) 这样,我们就创建了一个刚体,系统自动命名为 Body1。在交互界面 Parameters 页面 Image 处的下拉菜单中选择底座,并保持 Visible 选项 为勾选状态,如图 2-10。 



图 2-10





5) 在交互界面顶部 Name 处将该刚体重名为底座,在 Parameters 页面下部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚体相 对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1,如图 2-11。

备注:每次输入参数或修改参数后,请敲一下回车键。



图 2-11

6) 选中左侧模型树中的 Joints, 然后在右侧交互界面点击按钮+, 如图







8) 然后从 Body1 下拉菜单选择 Base0,从 Body2 下拉菜单选择底座,系统 会自动将该铰重命名为jBase0_底座,如图 2-14。







9) 从 Type 下拉菜单中选择 6 d.o.f., 然后在 Coordinates 页面取消勾选三个 平动和三个转动自由度选项(缺省全部为勾选状态),如图 2-15。



10) 选择菜单 File → Save, 保存模型。

通过以上操作,我们就完成了底座的建模:

- ✓ 准备几何图形
- ✔ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动





2.1.1.3 支架建模

 选择主菜单 Edit → Read from file,定位到路径 "D:\UM 培训教程\几何 素材\地球仪",选中支架.img,点击打开,如图 2-16。







选中左侧模型树中的 Bodies,右侧交互界面默认显示刚体底座的参数,如图 2-18,然后在交互界面点击按钮+。这里也可以选中 Bodies,点右键,选择菜单 Add element to group "Bodies"。



图 2-18

4) 这样,我们就创建了第二个刚体,系统自动命名为 Body1,在交互界面 Parameters 页面 Image 处的下拉菜单中选择支架,并保持 Visible 选项 为勾选状态,如图 2-19。







5) 在交互界面顶部 Name 处将该刚体重名为支架,在 Parameters 页面下部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚体相 对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1,如图 **2-20**°



备注:每次输入参数或修改参数后,请敲一下回车键。

6) 选中左侧模型树中的 Joints, 右侧交互界面默认显示铰 jBase0 底座的参 数,如图 2-21,然后在交互界面点击按钮+。





8) 然后从 Body1 下拉菜单选择底座,从 Body2 下拉菜单选择支架,系统会 自动将该较重命名为 j 底座 支架, 如图 2-23。







9) 从 Type 下拉菜单中选择 Rotational,保持缺省设置。表示物体 2 支架相 对物体 1 底座具有一个转动自由度,铰点位于底座的原点,转动轴是底 座的 X 轴,并且支架的原点与底座的原点重合,支架的 X 轴与底座的 X 轴平行(重合),如图 2-24。



10) 在 Description 页面,我们可以改变 Value 值(转动铰对应为角度),预 览支架相对底座的运动(预览后请记得归零,并敲回车键),如图







其实,从第6-9步,也可以选中左侧模型树的Joints,点右键,选择菜单Add element to group "Joints" → Rotational, 然后分别选择 Body1 和 Body2 对应的物 体,如图 2-26。



11) 选择主菜单 **File** → **Save**,保存模型。

通过以上操作,我们就完成了支架的建模:

- ✔ 准备几何图形
- ✓ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动





2.1.1.4 球体建模

1) 选择主菜单 Edit → Read from file, 定位到路径 "D:\UM 培训教程\几何 素材\地球仪",选中球体.img,点击按钮打开,如图 2-27。

🗿 Read e	element				×
$\leftarrow \rightarrow$	<ul> <li>个 🧧 « UM培训</li> </ul>	教程 → 几何素材 → 地	球仪 ~ ご	♀ 搜索"地球仪"	
组织 ▼	新建文件夹				• 🔳 💡
•	名称	^	修改日期	类型	大小
	ள 底座.img		2020/5/7 11:25	UM Image	2 KB
	🖻 球体.img		2020/5/7 11:25	UM Image	5 KB
	페 支架.img		2020/5/7 11:25	UM Image	2 КВ
	文件名(N):	球体.img		打开(0)	〜 取消
		图 2	2-27		

2) 这样,我们就导入了地球仪支架的几何图形 (Images),如图 2-28 所 示。导入几何图形的目的是增强模型可视化效果,它并不参与动力学计 算。



图 2-28





3) 选中左侧模型树中的 Bodies (其实选中任意一个刚体都行), 然后在交互

界面点击按钮 +, 如图 2-29。这里也可以选中 Bodies, 点右键, 选择菜



4) 这样,我们就创建了第三个刚体,系统自动命名为 Body1,在交互界面 Parameters 页面 Image 处的下拉菜单中选择球体,并保持 Visible 选项 为勾选状态,如图 2-30。







5) 在交互界面顶部 Name 处将该刚体重名为球体,在 Parameters 页面下部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚体相 对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1,如图 2-31。



备注:每次输入参数或修改参数后,请敲一下回车键。

6) 选中左侧模型树中的 Joints (其实选中任意一个铰都行), 然后在交互界 面点击按钮 +, 如图 2-32。







7) 这样,我们就创建了第三个较,系统自动命名为 Joint1,如图 2-33。



图 2-33

8) 然后从 Body1 下拉菜单选择支架,从 Body2 下拉菜单选择球体,系统会 自动将该较重命名为j支架_球体,从Type下拉菜单中选择 Rotational, 如图 2-34。







9) 在 Joint Vector 处对支架和球体都选择 Z 轴,表示物体 2 球体相对物体 1 支架具有一个转动自由度,铰点位于支架的原点,转动轴是支架的 Z 轴,并且球体的原点与支架的原点重合,支架的 Z 轴与底座的 Z 轴平行 (重合),如图 2-35。



图 2-35

10) 在 Description 页面,我们可以改变 Value 值(转动铰对应为角度),预 览球体相对支架的运动(预览后请记得归零,并敲回车键),如图 2-36。



图 2-36





从第 6-9 步,也可以直接在 Bodies → 球体页面,点击按钮 ¹²⁶,选择菜单 Create

joint → Rotational, 然后选择 Body1 对应物体支架, 再设置转动轴 Z, 如图 2-37。

Name: 球体	+ +	. 🕩 ü	5			
Comments/Text at	tribute C					
Oriented points Parameters Coordinates (PP): Go to element Image:	Vectors Position Quaternion Visible atically (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	3D Contact Points	Create joint Image	<ul> <li>Rotational</li> <li>Translational</li> <li>6 d.o.f.</li> <li>General</li> <li>Quaternion</li> </ul>	Name: j球体 Body 1: 支架 Type: 《 Rotational Geometry Description Ja Joint points 支架 C Joint vectors 支架 axis Z 0 n 0 环体 axis Z	+       Image: Constraint force         Sint force         Image: Constraint force         Image: Constrate force

图 2-37

11) 选择主菜单 File → Save, 保存模型。

通过以上操作,我们就完成了球体的建模:

- ✔ 准备几何图形
- ✔ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动

至此,已完成所有建模工作。

本例详细介绍了 UM 软件导入几何、创建刚体和定义铰的一般方法,后续例 子不再赘述,建议初学者反复练习多次。





2.1.2 仿真

2.1.2.1 进入仿真程序

 选择 UM Input 程序的主菜单 Object → Simulation 运行仿真程序并自动 加载当前模型(或直接点击工具栏按钮)。



- 2) 待 UM Simulation 仿真程序运行后,关闭 UM Input 程序(最好不要让 两个程序同时访问一个模型)。
- 3) 加载了模型的仿真程序界面如图 2-39 所示,上方为主菜单和常用工具 栏,下方为程序桌面。在程序桌面上自动打开了一个动画窗口,显示当 前模型,可随意调整大小和位置,可关闭也可同时打开多个动画窗口。 请注意,由于 UM Simulation 程序采用了全新的图形引擎 ORGE,其动 画窗口操作与 UM Input 程序略有不同,使用时推荐将平移图标始终保持 为选中状态,则按下鼠标左键移动为平动,按下鼠标中键移动为转动, 滑动鼠标滚轮为缩放。



图 2-39





#### 2.1.2.2 设置求解参数

1) 选择主菜单 Analysis  $\rightarrow$  Simulation, 弹出仿真控制面板, 如图 2-40。

(或直接点击工具栏按钮))

◎ UM - Simulation - d:\um培训教程\我的um模型\地球仪

File	Analysis	Scanning	Tools	Windows	Help								
6	Simu	ulation		F9		≵ aần	a∎		+ -	Ġ	A		(
:	Stati	c and linea	r analysi	s F8	1. 1	/a= 🗠 "							
C	<u>ି</u> ନ ଁ ନ	င္က ဦး					Ľ, «	οµ	, O	Ě	× I	Т	



2) 在 Solver 页面,默认求解器为 Park,将仿真时间 Time 设置为 100(国

际单位: s), 如图 2-41。

Object simulation	inspector						
Solver In	itial conditions	Object v	variables	XVA	Inform	ation	
Simulation process	parameters g	Solver options	Type of o	oordinates	for bodies	PP: Options	
Solver BDF ABM Park Gear 2 Park Parallel Time Step size for animate Error tolerance Delay to real time Keep system material Computation of Block-diagon	tion and data s tion and data s tion and data s tion and data s acobian al Jacobian	e of solution Null space meth Range space meth storage 0.02 1E-6 ition	od (NSM) ethod (RSM	1)			
Integrati	on		Message			Close	







#### 2.1.2.3 设置初始条件

 切换到 Initial conditions 页面,可以看到系统自由度数目为 2,设置第一 个自由度的速度 Velocity 为1(国际单位: rad/s),如图 2-42。
 *备注:每次输入参数或修改参数后,请敲一下回车键。*

Solver         Initial conditions         Object variables         XVA         Information           Coordinates         Constraints on initial conditions <ul> <li></li></ul>	Object sir	nula	tior	inspe	ctor						
Coordinates       Constraints on initial conditions	Solver		In	itial con	ditions	Obj	ject v	ariables	XVA	Information	
●       ●       ●       ×=0       文         ↓       ✓       Coordinate       Velocity       Comment         1.1       0       1       ji原e_支架 1a         1.2       0       0       j支架_J体 1a	Coordinat	es (	Cons	straints	on initia	l conditior	ns				
↓       ✓       Coordinate       Velocity       Comment         1.1       0       1       i底座_支架 1a         1.2       0       0       i支架_球体 1a         1.2       0       0       i支架_球体 1a               Message       dx=       0.1        da=       0.1          Number of d.o.f. = 2         Message       Close	🖻 🖻		•	Ð	Θ	x=0 v	/=0	\. \			
1.1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       <		\$	✓	Coordi	nate		Velo	ocity		Comment	
1.2       0       0       j支架_球体 1a                                                                                                                                    <	1.1			0			1			j底座_支架 1a	
>       Message     da=       0.1 []]     da=       0.1 []]     Number of d.o.f. = 2   Integration Message Close	1.2			0			0			j支架_球体 1a	a
	< Messag Number of	ge f d.o. Integ	dx f. =	:= 2 on	0.1	] da=	1	0.1 🛄			Close
<b>厦</b> 2.42							ل م	- 42			





### 2.1.2.4 执行仿真计算

 点击按钮 Integration,执行仿真,在动画窗口可以看到球体随支架一起 绕底座 X 轴旋转运动,如图 2-43。



图 2-43

2) 计算完毕后,会自动弹出 Simulation over 提示;若要中途停止仿真,可 点击进度条的按钮 , 或按 ESC 键。

Process parameters Solver statistics Type of coordinates for bodies PP: Options Simulation process parameters Solver options Solver BDF ABM Null space method (NSM)
Type of coordinates for bodies     PP: Options       Simulation process parameters     Solver options       Solver     Type of solution       BDF     O Null space method (NSM)
Solver Type of solution BDF ABM O Null space method (NSM)
Park       Gear 2       Park Parallel       Time       t       Step size for animation and data storage       0.02       Error tolerance       1E-6       Delay to real time simulation
Keep system matrix decomposition     Computation of Jacobian     Block-diagonal Jacobian
Continue Message Save Interrup



3) 在弹出界面点击按钮 Interrupt,终止仿真。





### 2.1.2.5 修改初始条件

 现在回到 Initial conditions 界面,将第二个自由度的速度 Velocity 也设置 为1(国际单位: rad/s),如图 2-45。

备注:每次输入参数或修改参数后,请敲一下回车键。

Joiver	Initia	con	object variable	les XVA Information		
Coordinates		Co	Constraints on initial conditions			
		(a	→ → →   ×=0	ν=0 <u></u>		
	ψ	¥	Coordinate	Velocity	Comment	
1.1			0	1	j底座_支架 1a	
1.2			0	1	j支架_球体 1a	
•						
	1306		dy= 0.1 🖼 d	la= 0.1 🖼		

图 2-45

2) 如果不小心点击了按钮 Close 而将仿真控制面板关闭了,重新通过主菜

单 Analysis → Simulation 或直接点击工具栏按钮①打开即可。




#### 2.1.2.6 再次进行仿真

1) 点击按钮 Integration,再次执行仿真,在动画窗口可以看到球体既随支架一起绕底座 X 轴旋转运动,又相对支架 Z 轴旋转运动,如图 2-46。



2) 如果不小心点击了按钮 ⅔ 而将动画窗口关闭了,可通过主菜单 Tools

→ Animation Window...或工具栏按钮 重新打开。

#### 2.1.2.7 卸载当前模型

- 1) 待计算完毕或中途暂停,在弹出页面点击按钮 Interrupt 终止仿真。
- 2) 点击仿真控制面板的 Close 按钮,将其关闭。
- 3) 选择主菜单 File → Close, 卸载当前模型。
- 4) UM Simulation 程序仍在运行,可通过菜单 File → Open 加载其他模型,进行仿真工作。





2.2 实例二: 四连杆机构



图 2-47

图 2-47 所示为一个经典的四连杆机构模型,该模型由四个刚体(机架、曲柄、连杆和滑块)组成。惯性参考系原点位于机架底面,红色为 X 轴,绿色为 Y 轴,蓝色为 Z 轴。其中机架固定在地面,没有自由度,曲柄具有绕机架 Y 轴转动的自由度,连杆具有绕曲柄 Y 轴转动的自由度,滑块具有绕连杆 Y 轴转动的自由度,同时滑块又受到机架的约束只能沿着 X 轴运动,因此形成一个闭环系统,共有一个独立自由度。

本例用到的模块: UM Base。





### 2.2.1 建模

- 1) 运行 UM Input 程序。
- 2) 选择主菜单 File → New object, 新建一个 UM 模型。
- 3) 选择主菜单 File → Save as...,指定模型路径及名称 "D:\UM 培训教程\ 我的 UM 模型\四连杆机构"。
- 4) 选择主菜单 Edit → Read from file, 依次读入 "D:\UM 培训教程\几何素 材\四连杆机构"文件夹下的机架.img、曲柄.img、连杆.img 和滑块.img 四个几何图形, 如图 2-48。如遇报错,点击 No 即可。



图 2-48

5) 由于机架没有自由度,所以不必要为其创建刚体,可直接将其赋给 Base0。如图 2-49,先在左侧模型树选中 Object,然后在右侧交互界面 General 页面下方 Scene image 处的下拉菜单中选择几何机架。









9) 创建第一个较, Body1 选择 Base0, Body2 选择曲柄, Type 选择 Rotational, Joint points 分别为(1, 0, 0.8)和(0, 0, 0), Joint vector 都选择 Y 轴, 如图 2-53。表示将曲柄的原点与总体坐标系的点 (1, 0, 0.8)重合, 曲柄绕通过该点与总体坐标系 Y 轴平行的 Y'轴可 以转动,并且曲柄的 Y 轴与之平行(重合)。







切换到 Description 页面,设置 Rotation 值为 30(°),作为初始状态。
 然后,勾选 Prescribed function of time,然后在弹出对话框点是(Y),如
 图 2-54。



11) 在最下方数据框输入表达式 omega*t,回车,在弹出界面点击 Accept, 这时新的参数符号 omega 会自动添加到左侧下方的参数符号列表,缺省 值为 0,t则是系统变量时间。这个表达式用来定义时间函数驱动的转 动,所有带t标记的数据框都可以输入显含时间的函数表达式,如图







12) 创建第二个铰, Body1 选择曲柄, Body2 选择连杆, Type 选择 Rotational, Joint points 分别为(-0.3, 0, 0)和(0, 0, 0), Joint vector 都选择 Y 轴, 如图 2-56。表示将连杆的原点与曲柄局部坐标系的 点(-0.3, 0, 0)重合,连杆绕通过该点与曲柄局部坐标系 Y 轴平行的 Y'轴可以转动,并且连杆的 Y 轴与之平行(重合)。



13) 切换到 Description 页面,将 Value 值设为-55(°),如图 2-57。表示将 连杆相对曲柄转动一定角度作为初始状态。注意对于每一个 Joint,在局 部视图模式下,显示的都是 Joint 连接的第一个物体的局部坐标系。







14) 创建第三个铰, Body1 选择连杆, Body2 选择滑块, Type 选择 Rotational, Joint points 分别为(-0.8, 0, 0)和(0, 0, 0), Joint vector 都选择 Y 轴, 如图 2-58。表示将滑块的原点与连杆局部坐标系的 点(-0.8, 0, 0)重合, 滑块绕通过该点与连杆局部坐标系 Y 轴平行的 Y'轴可以转动,并且滑块的 Y 轴与之平行(重合)。



15) 切换到 Description 页面,将 Value 值设为 25 (度),如图 2-59。表示将 滑块相对连杆转动一定角度作为初始状态。注意对于每一个 Joint,在局 部视图模式下,显示的都是 Joint 连接的第一个物体的局部坐标系。







16) 创建第四个铰, Body1 选择 Base0, Body2 选择滑块, Type 选择 Translational, Joint points 分别为(0, 0, 0.6)和(0, 0, 0), Joint vector 都选择 X 轴,如图 2-60。表示将滑块的原点与总体坐标系的点 (0, 0, 0.6)重合,滑块沿通过该点与总体坐标系 X 轴平行的 X'轴可 以平动,并且滑块的 X 轴与之平行(重合)。



17) 在动画窗口点右键,选择 Mode → Object,可切换为整体模式,显示当前模型所有物体。也可点击动画窗口工具栏的 D 图标进行切换 ( ),如图 2-61。







18) 在左侧模型树中,分别点击 Images、Bodies 和 Joints 前面的一图标可以 将其中的元素折叠起来;点击 Summary,在右侧交互界面会有提示模型 是否有逻辑错误(一般的警告可以忽略),如图 2-62。



图 2-62

19) 选择主菜单 File → Save,保存模型。建议读者养成在建模过程中经常保存模型的习惯。

至此,我们完成了一个"曲柄滑块"机构(由四连杆演化而来)的建模。





# 2.2.2 仿真

- 选择 UM Input 程序的主菜单 Object → Simulation 运行仿真程序并自动 加载当前模型(或直接点击工具栏按钮)。
- 2) 待 UM Simulation 仿真程序运行后,关闭 UM Input 程序。
- 3) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板。(或直接点击工具栏按钮)
- 在 Solver 页面,设置求解器为 Park,仿真时间 Time 为 30 (s),数据步 长改为 0.005 (s),勾选 Computation of Jacobian,如图 2-63。

imulation n	Identifiers	Initial conditions	Object variables	XV	A Information	
malauonip	rocess paramete	s Solver options 1	ype of coordinates for bo	odies P	P: Options	
Solver BDF ABM Park Gear 2 Park Park Park Park tep size for rror tolerar Delay to Keep sys Computa Block	arallel	Solver options 1 Type of solution Null space method Range space method Range space method ata storage   0.005   1E-6   20	Type of coordinates for bo d (NSM) hod (RSM)	odies P	P: Options	

图 2-63

5) 切换到 Identifier 页面,给 omega 赋值 1 (rad/s),如图 2-64。





Obj	ect simulation	inspecto	or					
	Solver Id	r Identifiers Initial conditions Object variables XVA Information						
List	List of identifiers Identifier control							
		-						
v		1						
N	lame	Expressio	on Value	Comment				
0	mega	1						

图 2-64

6) 切换到 Initial conditions 页面,可以看到有两个铰的初始坐标不为0,这 是因为我们在建模时设置了一定的初始转角。由于系统存在闭环,因此 有一个铰会被切断,软件自动用约束方程描述,一般不需要处理。

	Object simulation inspector												
L	Solver	Iden	tifiers	Initial	conditio	ns Ob	oject va	ariables	XVA	Info	rmation		
	Coord	Coordinates Constraints on initial conditions											
		8	a	• •	Θ	x=0	v=0	<u>V</u>					
		ψ	1	Coordina	ate		Veloc	ity			Commen	t	
	1.1			-0.95993	3108859	7	0				j曲柄_道	崔杆 1a	
	1.3	X		0.43633	2312999	Ð	0				j连杆_滑块 1a(cut)		
	1.2			0			0 jBase		jBase0_)	骨块 <mark>1c</mark>			
	1.2 0 0 jBase0_猎块 1c Interpretation of the second sec												
		Int	egrati	on			Mes	sage				Close	

图 2-65

7) 点击 按钮可以通过"牛顿-拉弗逊"迭代计算出精确的初始条件。可见,这里显示系统总自由度数目为0,这是因为曲柄的运动是用时间函数描述的,那么它的运动是已知的,由此决定了系统中每一个体的运动。





Object simulation inspector										
Solver	Iden	tifiers	s Initial	conditio	ons Ol	oject va	ariables	XVA	Information	]
Coordin	Coordinates Constraints on initial conditions									
		@	• •	Θ	x=0	v=0	<u>V</u>			
	ŵ	4	Coordina	te		Veloc	ity		Comme	nt
1.1			-0.97641	1537034	43	-0.13	611575	5926	j曲柄_j	车杆 1a
1.3	X		0.452816	659474	5	0.03	0361157559257 j连杆_滑块 1a(cu		骨块 1a(cut)	
1.2			0.02081	765036	78	0.02	7640514	574	jBase0_	滑块 1c
1.2       0.0208176503678       0.027640514574       jBase0_滑块 1c         ▲       ●       ●       ●         Message       dx=       0.1 圖       da=       0.1 圖         Number of d.o.f. = 0       ●       ●       ●       ●										
	Inte	egrati	ion			Mes	sage			Close

图 2-66

8) 按钮 Integration,执行仿真,在动画窗口可以看到该机构各构件的运动 情况。



图 2-67





- 9) 计算完毕后,会自动弹出 Simulation over 提示;若要中途停止仿真,可 点击进度条的按钮 或按键 ESC。然后在弹出界面点击按钮 Interrupt,终止仿真。
- 10) 选择主菜单 Tools → Graphical window...打开一个绘图窗口(或点击工具栏按钮),用鼠标调整其大小和位置,如图 2-68。



图 2-68

- 11) 选择菜单 Tools → Wizard of variables...打开变量向导(或点击工具栏 按钮 / a=)。
- 12) 在变量向导左侧勾选物体**滑块**,右侧 Linear variables 页面缺省选择

**Coordinate**,分量 X,然后点右侧的 图标,创建变量 r:x (滑块),表 示滑块原点相对总体坐标系 X 轴的平动变量,如图 2-69。





😨 Wizard of variables					×		
User variables 🛛 😚 Read	tions 📑 Coord	dinates	Solver variable	s 📑 All forces	id Identifiers		
Variables for group of bodies	s 🔍 🔍 Joint forces	s 🛆	Angular variables	💒 Linear variables	a+b Expression		
□ □ 四连杆机构	Selected				^		
曲柄	滑块						
	Coordinates of po	oint in the bo	dy-fixed frame of refe	rence			
™ ⊻ 増块			D	0	0		
	Туре						
	Coordinate		C	Bipolar vector			
	O Velocity	Velocity         Dipolar velocity           Acceleration         Bipolar acceleration					
	○ Acceleration						
	Component	ОY	⊖z	0111	٥v		
	Resolved in SC of	Resolved in SC of body					
	Base0				-		
	Relative to body						
	Base0				-		
		1	0	0	0		
r:x(滑块)	Coordinates of point (0,	,0,0) of body	r	0, SC Base0, projection X	5		
r:x(滑块)							

图 2-69

- 13) 将该变量选中并拖入到绘图窗口。
- 14) 点击按钮 Integration,再次进行仿真计算,绘图窗口显示结果如图 2-70。



图 2-70





2.3 实例三: 椭圆规



图 2-71

图 2-71 所示为一个传统的椭圆规模型,该模型由四个刚体(底板、横滑标、纵滑标和旋转杆)组成。惯性参考系原点位于底板底面,红色为X轴,绿色为Y轴,蓝色为Z轴。其中底板固定在地面,没有自由度,横滑标可沿底板Y轴向平动,纵滑标可沿底板X轴向平动,而旋转杆相对纵、横两个滑标都可转动。因此形成一个闭环系统,共有一个独立自由度。

本例用到的模块: UM Base。





### 2.3.1 建模

- 1) 运行 UM Input 程序。
- 2) 选择主菜单 File → New object, 新建一个 UM 模型。
- 选择主菜单 File → Save as...,指定模型路径及名称 "D:\UM 培训教程\ 我的 UM 模型\椭圆规"。
- 4) 选择主菜单 Edit → Read from file,依次读入"D:\UM 培训教程\几何素 材\椭圆规"文件夹下的底板.img、横滑标.img、纵滑标.img 和旋转 杆.img 四个几何图形,如图 2-72。



图 2-72

5) 由于底板没有自由度,所以不必要为其创建刚体,可直接将其赋给 Base0。如图 2-73,先在左侧模型树选中 Object,然后在右侧交互界面 General 页面下方 Scene image 处的下拉菜单中选择几何底板。



图 2-73







8) 点击右侧面板上方的按钮 □,复制生成第三个刚体,重命名为旋转杆,从 Image 下拉菜单选择几何旋转杆,设置质心坐标(0,2,0),如图 2-76。



图 2-76

9) 创建第一个铰, Body1 选择 Base0, Body2 选择横滑标, Type 选择 Translational, Joint points 分别为(0, 1, 0)和(0, 0, 0), Joint vector 都选择 Y 轴,如图 2-77。表示将横滑标的原点与总体坐标系的点 (0, 1, 0)重合,横滑标沿总体坐标系 Y 轴可以平动,并且横滑标的 Y 轴与之平行(重合)。



图 2-77





10) 点击右侧面板上方的按钮 🖻,复制生成第二个铰, Body2 选择纵滑标,

**Joint points** 分别为(0,0,0)和(0,0,0), **Joint vector** 都选择 **X** 轴,如图 2-78。表示将横滑标的原点与总体坐标系的原点重合,纵滑标 沿总体坐标系 **X** 轴可以平动,并且纵滑标的 **X** 轴与之平行(重合)。



图 2-78

切换到 Description 页面,勾选将 Prescribed function of time,在弹出窗口点击是(Y),然后在下方数据框里输入表达式 sin(t),回车,定义纵滑标沿 X 轴做正弦运动,幅值为1(m),如图 2-79。







12) 创建第三个铰, Body1 选择横滑标, Body2 选择旋转杆, Type 选择 Rotational, Joint points 分别为(0,0,0)和(0,1,0), Joint vector 都选择 Z 轴,如图 2-80。表示将旋转杆的点(0,1,0)与横滑标原点 重合,旋转杆绕横滑标的 Z 轴可以转动,并且旋转杆的 Z 轴与之平行 (重合)。



13) 点击右侧交互界面上方的按钮^{4,9},复制生成第四个铰,Body1选择纵滑标,Joint points 分别为(0,0,0)和(0,0,0),如图 2-81。表示将旋转杆的原点与横滑标的原点重合,旋转杆绕横滑标的 Z 轴可以转动,并且旋转杆的 Z 轴与之平行(重合)。



图 2-81



- 15) 在左侧模型树中,分别点击 Images、Bodies 和 Joints 前面的一图标可以 将其中的元素折叠起来;点击 Summary,在右侧交互界面会有提示模型 是否有逻辑错误(一般的警告可以忽略)。
- 16) 选择主菜单 File → Save,保存模型,然后关闭 UM Input 程序。建议读 者养成在建模过程中经常保存模型的习惯。

至此,我们完成了一个椭圆规的建模。





## 2.3.2 仿真

- 1) 运行 UM Simulation 仿真程序。
- 选择主菜单 File → Open..., 弹出文件浏览器, 然后定位到路径 "D: \UM 培训模型\我的 UM 模型", 这时可以看到该路径下有三个模型, 鼠标选中任意一个, 可以预览模型。选中椭圆规, 点击 OK。



图 2-83

- 3) 拖动鼠标自由调整动画窗口的大小和位置(一般不要最大化)。
- 4) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板(或直接点击工具栏按钮)。
- 在 Solver 页面,默认求解器为 Park,将仿真时间 Time 设置为 20 (s),如图 2-84。
- 6) 选择菜单 Tools → Wizard of variables...打开变量向导(或点击工具栏 按钮 / a=)。
- 7) 在变量向导左侧勾选物体旋转杆,右侧输入局部坐标(0,4,0),选择 Coordinate,分量 V,然后点右侧的 图标,创建变量 r:v(旋转杆), 表示旋转杆局部坐标系中的点(0,4,0)在总体坐标系中的运动轨迹, 如图 2-85。





Object simulation inspec	tor					
Solver Initial cond	tions Object variables XVA Informa	ation				
Simulation process parameter	rs Solver options Type of coordinates for bodies	PP: Options				
Solver BDF ABM Park Gear 2 Park Parallel	Γype of solution ○ Null space method (NSM) ● Range space method (RSM)					
Time	t > ~ 20 📖					
Step size for animation and data storage       0.02         Error tolerance       1E-6         Delay to real time simulation						
Integration	Message	Close				
	2-04					
🛱 Wizard of variables						
Wizard of variables		×				
Wizard of variables a+b Expression User varia	ibles 💏 Reactions 📑 Coordinates 💽 S	olver variables				
Wizard of variables Arb Expression User variance Variables for group of boo	ibles 📅 Reactions 📑 Coordinates 💽 S lies 🔍 Joint forces 🛆 Angular variable	olver variables 📑 All forces es 🗹 Linear variables				
Wizard of variables a+b Expression User varia ジ Variables for group of boo 回 前回規	ibles of Reactions Coordinates O S lies A Joint forces Angular variable Selected	olver variables es d' Linear variables				
Wizard of variables ■ b Expression User varia ジ Variables for group of boo ● ● 新恩規 ● □ 新恩規 ■ 【 描得标 ■ 【 机得标	ables # Reactions Coordinates ① S lies 风 Joint forces 介 Angular variable Selected 旋转杆	iolver variables All forces es 2 Linear variables				
Wizard of variables ■ b Expression User varia び Variables for group of boo □ 簡優規 □ 橫滑标 □ 纵滑标 □ 旅转杆	bles	iolver variables in All forces				
● Wizard of variables ■ b Expression User vari ● Variables for group of boo ● ● 新恩規 ● ↓ 借滑标 ● 纵滑标 ● ♡ 旋转杆	bles 钟 Reactions 广 Coordinates ① S lies 风 Joint forces 介 Angular variable Selected 旋转杆 Coordinates of point in the body-fixed frame of referen 0	iolver variables as d' Linear variables All forces as d' Linear variables as d' Line				
<ul> <li>Wizard of variables</li> <li>a+b Expression User variables</li> <li>Variables for group of box</li> <li>● ● 新恩規</li> <li>● ● 新恩規</li> <li>● □ 新恩規</li> <li>● □ 秋日和</li> <li>● ○ 読转杆</li> </ul>	ables # Reactions Coordinates ① S lies A Joint forces Angular variable Selected 旋转杆 Coordinates of point in the body-fixed frame of referen 0 Type	iolver variables es d'Linear variables				
<ul> <li>Wizard of variables</li> <li>■ 社会 Expression</li> <li>■ 社会 User variables for group of box</li> <li>■ 社会 User variables for group of box</li> <li>■ 社会 User variables</li> <li>■ 社会 User variables<!--</td--><td>ables # Reactions Coordinates ③ S lies A Joint forces A Angular variable Selected 旋转杆 Coordinates of point in the body-fixed frame of referen 0 Type ③ Coordinate ③ Bipolar</td><td>iolver variables es d'Linear variables</td></li></ul>	ables # Reactions Coordinates ③ S lies A Joint forces A Angular variable Selected 旋转杆 Coordinates of point in the body-fixed frame of referen 0 Type ③ Coordinate ③ Bipolar	iolver variables es d'Linear variables				
Wizard of variables ■ b Expression User vari ジ Variables for group of bo. □ 簡優規 □ 積滑标 □ 纵滑标 □ 沈转杆	ables	iolver variables in All forces es d'Linear variables ince 4 0 vector velocity				
Wizard of variables ■ Expression User vari ジ Variables for group of bo ■ 簡恩規 □ 描書标 □ 纵滑标 □ 逆转杆	bles	iolver variables ince ace 4 0 vector velocity acceleration				
<ul> <li>Wizard of variables</li> <li>a-b Expression User variables</li> <li>び Variables for group of bo</li> <li>● 新恩規</li> <li>● 横恩規</li> <li>● 横恩規</li> <li>● 横日标</li> <li>● 微容标</li> </ul>	bles	iolver variables ince ace 4 0 vector velocity acceleration DIVI © V				
<ul> <li>Wizard of variables</li> <li>■ 社会 Expression User variables for group of bo</li> <li>● ● 社会 社会</li></ul>	bles	iolver variables ince ace 4 0 vector velocity acceleration DIVI © V				
<ul> <li>Wizard of variables</li> <li>a•b Expression User variables for group of bo</li> <li>● 前周規</li> <li>● 荷周根</li> <li>● 荷景标</li> <li>● ○ 前常規</li> <li>● ○ ○ 前常規</li> <li>● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</li></ul>	bles	vector velocity acceleration				
<ul> <li>Wizard of variables</li> <li>a+b Expression User variables for group of bo</li> <li>● 新恩規</li> <li>● 横恩規</li> <li>● 横周規</li> <li>● 横原枝</li> <li>● 小前</li> <li>●</li></ul>	bles	iolver variables ince es ince 4 0 vector velocity acceleration				
<ul> <li>Wizard of variables</li> <li>● Expression User variables for group of bo</li> <li>● 前周規</li> <li>● 補周規</li> <li>● 横周規</li> <li>● 横原規</li> <li>● 横原相</li> <li>● ● 横原規</li> <li>● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</li></ul>	bles	iolver variables in All forces es if Linear variables ince 4 0 vector velocity acceleration				
<ul> <li>Wizard of variables</li> <li>a+b Expression User varia</li> <li>ジ Variables for group of bo</li> <li>● 新恩規</li> <li>● 横周規</li> <li>● 横周規</li> <li>● 横原規</li> <li>● 横原相</li> <li>● 横原相</li> <li>● ● 横原規</li> <li>● ● 横原規</li> <li>● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</li></ul>	bles	iolver variables in All forces es if Linear variables ince 4 0 vector velocity acceleration				
Wizard of variables ■ Expression User vari ジ Variables for group of bo ■ 簡思規 □ 描目标 □ 纵滑标 □ 沈转杆	bles	iolver variables in All forces es in Centre in				
Wizard of variables          a+b Expression       User variables for group of bo         ジ Variables for group of bo         一       葡萄恩規         一       横滑标         」       小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          小          ・          ・          ・          ・          ・         <	Albertions       Coordinates       S         Selected       加諾村干         Coordinates of point in the body-fixed frame of referen         0         Type         © Coordinate       Bipolar         Velocity       Bipolar         Acceleration       Bipolar         X       Y       Z         Resolved in SC of body       Base0         0       0	iolver variables   es   Ince   4   0     vector   velocity   acceleration     0   0   0   0   0   0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0				
Wizard of variables ■ b Expression User vari ジ Variables for group of bo ● ● 新恩規 ● ↓ 積滑标 ● ↓ 銀滑标 ● ♡ 旋转杆 · · · · · · · · · · · · · · · · · · ·	bles	iolver variables   es   Ince   4   0     Vector   vector   vector   vector     0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0				
Wizard of variables ■ b Expression User vari ジ Variables for group of bo ■ 新恩規 □ 横滑标 □ 纵滑标 ♡ 旋转杆 () 旋转杆 v(旋转杆)	bles	iolver variables   es   Ince   4   0     vector   vector   velocity   acceleration     0   0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <				

8) 将该变量选中并拖入到动画窗口,然后关闭变量向导。





9) 点击按钮 Integration,进行仿真计算,可以看到旋转杆上标记点的运动 轨迹为一个椭圆,默认为灰色显示,如图 2-86。



图 2-86

10) 暂停仿真,在动画窗口点右键,选择 Position of vector list → Top,这样在动画窗口上方就显示了该变量,如图 2-87。







- 11) 双击变量 **r:v(旋转杆)**,将颜色修改为比较醒目的颜色(**红色**),然后继续仿真。
- 12) 计算完毕后,会自动弹出 Simulation over 提示,如图 2-88,点击确定, 然后在弹出界面点击按钮 Interrupt,终止仿真。



图 2-88

- 13) 这里介绍一下录制仿真动画的方法:由于当前版本的图形引擎存在非 ASCII 码兼容性问题,因此请先将 UM Simulation 程序关闭,然后把椭 圆规模型(整个文件夹)复制到一个不含中文字符及空格的目录下,并 以拉丁字母重命名,如:D:\Trammel。
- 14) 运行 UM Simulation 程序, 打开 D:\Trammel。
- 15) 点击动画窗口工具栏第一个按钮¹⁰⁰,选择 Save animation...,如图 2-89。

Ō	Q 🕅 🍕	str 🕞 🔹 🔀 🗊 🖷 🔽
ß	Copy to clipboard	
B	Save to file	
	Save animation	
	Set viewport size to	
_		- ^

图 2-89

16) 在弹出窗口勾选 Save animation 和 Codec 下拉菜单中选择 Lagarith Lossless Codec 或其他选项, 然后点击 Apply, 如图 2-90。





	settings	×			
Save animation					
Copy ste	p	0.04000000			
File name	2	motion			
Time scal	e	1.0000			
Compres	sion				
Codec:	Lagarith L	ossless Codec 🛛 🗸 🗸			
	Uncompressed Microsoft Video 1 Lagarith Lossless Codec				
	TechSmith	Screen Capture Codec			



17) 选择主菜单 Analysis → Simulation,弹出仿真控制面板(或直接点击工具栏按钮),然后点击按钮 Integration,进行仿真计算,计算过程中不要关闭动画窗口,直到计算完毕,点击确定和 Interrupt,会自动在模型目录下生成动画文件 motion.avi。



此电脑 > Data (D:) > Trammel

名称 ^	修改日期	类型	大小
History	2021/3/4 9:51	文件夹	
🔄 input.dat	2021/3/3 12:01	Universal Mecha	5 KB
🖻 input.xv	2021/3/4 10:10	UM Document. I	1 KB
🗐 last.fin	2021/3/4 9:51	FIN 文件	1 KB
Iast.icf	2021/3/4 9:51	ICF 文件	3 KB
🗐 last.par	2021/3/4 9:51	PAR 文件	1 KB
🖷 last.xv	2021/3/4 9:51	UM Document. I	1 KB
🗃 motion.avi	2021/3/4 10:15	AVI Video File	13 053 KB
🛋 object.bmp	2021/3/3 12:01	BMP 文件	226 KB

图 2-92

18) 关闭 UM Simulation 仿真程序(仿真界面的动画窗口不必关,否则下次 打开时需要重新配置)。





# 2.4 实例四: 刚柔耦合系统



图 2-93 所示为一个典型的刚柔耦合系统,该模型由三个刚体(支座、刚体A、刚体B和柔性梁)组成。惯性参考系原点位于柔性梁中性层一端,红色为X 轴,绿色为Y轴,蓝色为Z轴。其中支座固定在地面,仅作示意,没有自由度, 刚体A和刚体B都具有沿总体坐标系Z轴向平动的自由度,柔性梁与支座铰 接,刚体A与柔性梁通过两个弹簧阻尼器连接,刚体B和刚体A也通过两个弹 簧阻尼器连接。

本例用到的模块: UM Base、UM FEM。





## 2.4.1 准备柔性体

- 运行 UM Input 程序,新建一个 UM 模型,另存为 "D:\UM 培训教程\我 的 UM 模型\刚柔耦合系统"。
- 2) 复制"D:\UM 培训教程\FEM 素材"下的文件夹 Beam 到"D:\UM 培训 教程\我的 UM 模型\刚柔耦合系统"。Beam 文件夹里包含一个 UM 柔性 体素材文件 input.fum,该文件可以由 ANSYS、ABAQUS 或其他有限元 软件得到。请读者关注微信公众号"同算科技",发送消息"030"或 "031",可查看从 ANSYS 或 ABAQUS 导入模型到 UM 的基本方法和流 程,这里不再赘述。

备注: ANSYS-UM 接口可直接生成最终文件 input.fss, 而 ABAQUS-UM 接口目前只能生成中间文件 input.fum。

此电脑 > Data (D:) > UM培训教程 > 我的UM模型 > 刚柔耦合系统 > Beam 名称 修改日期 类型 大小 input.fum 2020/5/7 11:25 UM Flexible Sub... 618 KB 图 2-94 3) 选择菜单 Tools → Wizard of flexible subsystem, 打开柔性体子系统向 导。 Wizard of flexible subsystems Select data file 🔟 🔍 🔍 🚸 🚸 🖛 🕨 🕼 🗑 🗑 😿 Data file: C:\Users\Public\Documents\UM Software Lab'

图 2-95





 $\times$ 

#### 4) 在图 2-95 界面右侧点击按钮, 在文件浏览器中定位到路径 "D:\UM

培训教程\我的 UM 模型\刚柔耦合系统\Beam",选中 input.fum,点击 OK,如图 2-96。

Read FEM model of object



图 2-96

5) 加载 Beam 模型后,这里我们可以在 General 页面看到模型的路径、有限元软件及版本、单元和节点数目等信息,如图 2-97。











8) 在弹出界面点击是(Y)。





11) 关闭柔性体子系统向导 Wizard of flexible subsystem。





## 2.4.2 刚柔耦合系统建模

 回到 UM Input 程序主界面,从路径 "D:\UM 培训教程\几何素材\刚柔耦 合系统"依次导入几何素材支座.img,刚体 img 和弹簧.img,将支 座.img 设置为 Scene image,重力方向默认为 Z 轴向下,重力加速度 g = -9.81m/s²,如图 2-103。



2) 创建第一个刚体,命名为刚体A,从Image下拉菜单选择几何刚体,勾选Compute automatically,程序会自动根据几何图形计算出物体的质量、转动惯量和质心位置,如图 2-104。







4) 先在左侧模型树选中 Subsystems, 然后在右侧交互界面点击按钮┿, 添

加一个子系统,从 Type 下拉菜单中选择 Linear FEM subsystem,如图 2-105。









6) 重命名为柔性梁,在Image页面可选择 Simplified 或 Full 模式,可选择 是否显示节点和单元,以及颜色和尺寸,如图 2-107。



- 7) 创建第一个较, Body1 选择 Base0, Body2 选择柔性梁.FEM, Type 为 6 d.o.f., Body1 和 Body2 的铰点坐标都是原点,在 Coordinate 页面定义 三个自由度,分别是沿X轴平动和绕Y、Z轴转动,如图 2-108。



universal mechanism	它Tongsuan 同算
8) 复制生成第二个铰,重命名为j 铰点坐标都为(10,0,0),取 Name: jBase0_FEM_2 + 匣 ■ ▼ Body1: Body2: Base0 ▼ 案性梁.FEM ▼ Type: 6 d.o.f. ▼ Geometry Coordinates Body 1 Body 2 % Visual assignment Translation x: 10 y: C Rotation x: C Shift after rotation x: C y: C Shift after rotation x: C y: C	jBase0_FEM_2, 修改 Body1 和 Body2 的 消 X 方向平动的自由度, 如图 2-109。 Name: jBase0_FEM_2 + ● ● ▼ Body1: Body2: Base0 ▼ 梁性梁.FEM ▼ Type: 6 d.o.f. Geometry Coordinates Translational degrees of freedom: X 0.00000000000 24 Y 0.00000000000 24 Cotational degrees of freedom: Orientation angles 3,1,2 ✓ 1 0.00000000000 24 2 0.0000000000 24 3 0.0000000000 24
	2 109

图

9) 创建第三个铰, Body1 选择 Base0, Body2 选择刚体 A, Type 为 Translational, Body1 的较点坐标(5,0,0.5), Body2 的较点坐标为刚 体 A 局部坐标系的原点, 定义刚体 A 相对总体坐标系有沿 Z 轴平动的自 由度,如图 2-110。



图 2-110




10) 复制生成第四个铰, Body2 选择刚体 B, Type 为 Translational, Body1
 的铰点坐标(5,0,1.5), Body2 的铰点坐标为刚体 B 局部坐标系的原
 点, 刚体 B 相对总体坐标系也具有沿 Z 轴平动的自由度,如图 2-111。



图 2-111

11) 先选中左侧模型树 Bipolar forces,然后点击右侧按钮+,添加一个力元,这种力元只作用于两个物体的两点连线上,力的数值是相对速度或位移的函数,常用于模拟各种线性和非线性阻尼器,这里我们用它来模拟简单的弹簧阻尼元件,如图 2-112。







12) Body1 选择柔性梁.FEM, Body2 选择刚体 A,从 GO 下拉菜单选择弹簧 赋给力元,连接点坐标分别为(4.5,0,0)和(-0.5,0,0),从 Type 下拉菜单选择 Linear,如图 2-113。



图 2-113

13) 定义刚度系数为 k1 (赋值 1.0e6 N/m), 阻尼系数为 c1 (赋值 1.0e4 Ns/m), 定义弹簧自然长度为 0.5 m, 如图 2-114。



#### 图 2-114

14) 复制生成第二个力元,将 Body1 连接点坐标修改为(5.5,0,0), Body2 连接点坐标修改为(0.5,0,0),其余不变。





15) 复制生成第三个力元,将 Body1 改为刚体 A, Body2 改为刚体 B, 连接点坐标分别为(-0.5, 0, 0.5)和(-0.5, 0, 0),定义刚度系数为 k2 (赋值 5.0e5 N/m),阻尼系数为 c2 (赋值 4.0e3 Ns/m),如图 2-115。



图 2-115

- 16) 复制生成第四个力元,将 Body1 连接点坐标修改为(0.5,0,0.5),
   Body2 连接点坐标修改为(0.5,0,0),其余不变。
- 17) 点击左侧模型树的 Summary, 检查模型是否有逻辑错误。
- 18) 保存模型,关闭 UM Input 程序。

至此,我们完成了一个刚柔耦合振动系统的建模。





## 2.4.3 动力学仿真

 运行 UM Simulation 仿真程序,选择菜单 File → Open...,加载模型。 如果在安装软件时勾选了 "Associate files *.dat with UM"选项,那么我 们可以通过双击模型文件 input.dat 直接打开模型,如图 2-116。

名称     修改日期     类型     大小       Beam     2021/3/4 10:30     文件夹       History     2021/3/4 10:40     文件夹       input.dat     2021/3/4 10:42     Universal Mecha     7 KB       object.bmp     2021/3/4 10:42     BMP 文件     226 KB       資 発性梁.ini     2021/3/4 10:42     配置设置     3 KB	此电脑 > Data (D:) > UM培训教程 > 我的UM模型 > 刚柔耦合系统						
Beam       2021/3/4 10:30       文件夹         History       2021/3/4 10:40       文件夹         input.dat       2021/3/4 10:42       Universal Mecha       7 KB         object.bmp       2021/3/4 10:42       BMP 文件       226 KB         資 柔性梁.ini       2021/3/4 10:42       配置设置       3 KB	名称 ^	修改日期	类型	大小			
History       2021/3/4 10:40       文件夹         Imput.dat       2021/3/4 10:42       Universal Mecha       7 KB         Imput.dat       2021/3/4 10:42       BMP 文件       226 KB         Imput.dat       2021/3/4 10:42       BMP 文件       226 KB         Imput.dat       2021/3/4 10:42       BMP 文件       226 KB	Beam	2021/3/4 10:30	文件夹				
input.dat         2021/3/4 10:42         Universal Mecha         7 KB           object.bmp         2021/3/4 10:42         BMP 文件         226 KB           会業性梁.ini         2021/3/4 10:42         配置设置         3 KB	History	2021/3/4 10:40	文件夹				
object.bmp     2021/3/4 10:42     BMP 文件     226 KB       公 柔性梁.ini     2021/3/4 10:42     配置设置     3 KB	u input.dat	2021/3/4 10:42	Universal Mecha	7 KB			
중 柔性梁.ini 2021/3/4 10:42 配置设置 3 KB	🛋 object.bmp	2021/3/4 10:42	BMP 文件	226 KB			
	🔊 柔性梁.ini	2021/3/4 10:42	配置设置	3 KB			



图 2-116

拖动鼠标自由调整动画窗口的大小和位置(一般不要最大化),在动画窗口通过鼠标和工具栏按钮自由调整模型视图。



图 2-117

universal mechanism	它 了 同算
<ol> <li>3) 选择主菜单 Tools →</li> </ol>	Wizard of variables打开变量向导(或点击工具
栏按钮 🛵 ),定义柔 (10,0,0)每米取	<b>性梁 FEM</b> 的垂向位移变量(从点( <b>0, 0, 0</b> )到点 一个点,共计 11 个),如图 2-118。
T Wizard of variables	
a-b Expression User variables	Image: Second state       Image: Second state<
	Selected FEM
□ 刚体B	Coordinates of point in the body-fixed frame of reference
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	10 0 0
	Туре
	Coordinate     Bipolar vector     Bipolar velocity
	Acceleration     Bipolar acceleration
	Component
	Resolved in SC of body
	Base0
r:z(柔性梁.FEM)	Coordinates of point (10,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z
r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM) r:z(柔性梁,FEM)	
	图 2 110

 4) 选择主菜单 Tools → Histogram...,打开一个柱状图窗口,将上一步创 建的 11 个变量全选并拖入其中。

5)选择主菜单 Analysis → Simulation,弹出仿真控制面板(或直接点击工具栏按钮)。选择求解器 Park,设置仿真时间为 20 (s),数据采样步长为 0.005 (s),勾选选项 Computation of Jacobian。点击 Integration,开始计算,如图 2-119。









6) 等待仿真完成,点击确定和 Interrupt。

7) 将11个变量从变量向导或柱状图窗口拖入仿真控制面板的 Object

variables 界面;点击按钮□,将该组变量保存为文件刚柔耦合系

统.var,便于以后计算调用;保持"Automatic saving of variables"为勾选状态,这样才能以文件形式保存该组变量的计算结果,如图 2-120。

XVA	Info	rmation	FE subsystems		Tools
Solver	Identif	iers	Initial conditions		Object variables
Automatic saving o	f variables				
∍ 🖪 ⊨ 🛋	×n En Name	刚柔耦合系统			
o name					
lame	Comment				
:z(柔性梁.FEM)	Coordinates of point (	(0,0,0) of body 🗿	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(1,0,0) of body 🛱	性梁.FEM relative to Ba	se0, SC Base	D, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(2,0,0) of body 🛱	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(3,0,0) of body 🗿	e性梁.FEM relative to Ba	se0, SC Base	), projection Z
:z(柔性梁.FEM)	Coordinates of point (	(4,0,0) of body 🛱	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(5,0,0) of body 🛱	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(6,0,0) of body 켥	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(7,0,0) of body 羿	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
:z(柔性梁.FEM)	Coordinates of point (	(8,0,0) of body 🛱	e性梁.FEM relative to Ba	se0, SC Base	0, projection Z
r:z(柔性梁.FEM) Coordinates of point (9,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z					
:z(柔性梁.FEM)	Coordinates of point (	(10,0,0) of body	柔性梁.FEM relative to B	ase0, SC Base	e0, projection Z
Integra	tion	Me	essage		Close

图 2-120

8) 点击 Integration,执行计算,计算完毕,这样 11 个变量的结果都保存了 下来,如图 2-121。

	Object simulation inspector	
	Solver Identifiers Initial conditions Object variables XVA Information FEM subsystems Tools	
11	V Automatic saving of variables	
	ि Name 网络理会系统	
	No name	
1	Name Comment	
	r:z(柔性梁.FEM) Coordinates of point (0,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
ч	r:z(柔性梁.FEM) Coordinates of point (1,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (2,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (3,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (4,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (5,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (6,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (7,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (8,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (9,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	r:z(柔性梁.FEM) Coordinates of point (10,0,0) of body 柔性梁.FEM relative to Base0, SC Base0, projection Z	
	X-values	
	Time	t
	Integration Message Close	

图 2-121





9) 选择主菜单 Tools → Graphical window..., 打开一个绘图窗口, 将图
 2-121 所有计算结果拖入绘图窗口。



图 2-122

10) 在绘图窗口左侧列表框选所有曲线,点右键,可以选择输出数据至记事 本或 MS Excel 表格,如图 2-123。



图 2-123





11) 选择主菜单 Tools → Table Processor..., 打开一个变量处理窗口, 将图
 2-121 所有计算结果从仿真控制面板或绘图窗口拖入变量处理窗口, 这里
 内置了一些数据处理函数, 勾选 MaxAbs 和 Std Dev, 如图 2-124。

Processor of variables			- • •
Stay on top			
Table processor Transformation of	variables		
Percentile_99		MaxAbs	Std_Dev
Percentile_99_point_85	r:z(柔性梁.FEM) - Coordinates of point (0,0,0) of body 柔性梁.F	4.4408921E-0016	7.1017146E-0017
Percentile_abs_0_point_1	r:z(柔性梁.FEM) - Coordinates of point (1,0,0) of body 柔性梁.F	0.25585461	0.079217217
Percentile_abs_0_point_15 Percentile_abs_1	r:z(柔性梁.FEM) - Coordinates of point (2,0,0) of body 柔性梁.F	0.49008256	0.15182189
Percentile_abs_99 Percentile_a	r:z(柔性梁.FEM) - Coordinates of point (3,0,0) of body 柔性梁.F	0.68153995	0.21126347
Percentile_abs_99_point_85	r:z(柔性梁.FEM) - Coordinates of point (4,0,0) of body 柔性梁.F	0.80980796	0.25115063
Ride_Comfort_G	r:z(柔性梁.FEM) - Coordinates of point (5,0,0) of body 柔性梁.F	0.85567307	0.26542845
Lateral_Sperling_Index	r:z(柔性梁.FEM) - Coordinates of point (6,0,0) of body 柔性梁.F	0.80980796	0.25115063
UIC513 Nmv axvp95	r:z(柔性梁.FEM) - Coordinates of point (7,0,0) of body 柔性梁.F	0.68153995	0.21126347
UIC513_Nmv_azp95	r:z(柔性梁.FEM) - Coordinates of point (8,0,0) of body 柔性梁.F	0.49008256	0.15182189
	r:z(柔性梁.FEM) - Coordinates of point (9,0,0) of body 柔性梁.F	0.25585461	0.079217217
LastAbscissa	r:z(柔性梁.FEM) - Coordinates of point (10,0,0) of body 柔性梁	5.5511151E-0016	7.5765061E-0017
LastOrdinate			
MaxAbs			
Max_Min_2			
Mean Nean Std Dev3			
MinAbs			
Std Dev			
×			

#### 图 2-124

12) 选择主菜单 Tools → Statistics..., 打开一个统计窗口, 将图 2-121 所有 计算结果从仿真控制面板或绘图窗口拖入统计窗口, 可查看其功率谱密 度分布图, 如图 2-125。



图 2-125





- 13) 现在,请点击仿真控制面板的 Close 按钮,将其关闭,再关闭前面两步 打开的变量处理窗口和统计窗口。
- 14) 选择主菜单 Analysis → Static and linear analysis, 弹出线性分析控制面
  - 板(或直接点击工具栏按钮②),如图 2-126。

Static and linear analysis	
· · · · · · · · · · · · · · · · · · ·	
Equilibrium Frequencies/Eigenvalues Root locus Linear vibration	s Identifiers Initial conditions Options
Frequencies and modes     Method of analysis     Lanczos Algorithm     O R algorithm	Eigenvalues  Use zero velocities  Skip damping matrix  Frequency/Damping ratio  Sort by: frequency

#### 图 2-126

15) 勾选左侧的 Frequencies and modes 和右侧的 Eigenvalues, 点击按钮

阻尼,右侧有阻尼)。

🕘 Static a	and linear	r analysis							
<b>0</b> [•]	ë e	≣ <u>≉</u>							
Equilibrium	Frequence	cies/Eigenvalues	Root locus	Linear vibration	s Ider	ntifiers Initia	al conditions C	Options	
Freque	encies and	d modes			🖂 Eig	envalues			
Method of	fanalysis				Us	e zero velociti	es		
OLanczo	s Algorithm	n 🔘	QR algorithm		Ski	p damping ma	trix		
f (H	łz)			^	Frequ		a ratio		~
1 0.7	30241					, chej jo anipin	91000		
2 3.4	7973				Sort	by: frequency			~
3 5.1	5791					f (Hz)	Beta(%)/r		^
4 8.0	1754				1	0.730304	0.307		
5 9.6	1979				2	3.46788	8.278		
6 22.	2608				3	5.15782	0.561		
7 22.	4281				4	7.94376	20.975		
8 37.	8418				5	9.61879	2.451		
9 50.	3314				6	21.9071	9.557		
10 59.	1305				7	22.4407	2.117		
11 85.	1424				8	37.8011	5.040		
12 89.	1363				9	50.2746	4.750		
13 92.	8198				10	58.8839	7.031		
14 116	5.087			~	11	84.7773	9.278		~
Animation of	ofmodes								
Amplitude									
Rate									

图 2-127





16) 选中某一阶频率,点击按钮 • 可以在动画窗口观察其模态振型。



- 图 2-128
- 17) 关闭线性分析工具。
- 18) 关闭 UM Simulation 程序。
- 19) 最后,在计算机上打开模型文件夹,你会发现增加了很多文件,其中名为 last 的系列文件是最后一次的仿真配置文件,名为**刚柔耦合系统**的系列文件则对应计算变量及其结果。

北电脑 → Data (D:) → UM培训教程 → 我的UM模型 → 刚柔耦合系统					
名称 ^	修改日期	类型	大小		
Beam	2021/3/4 10:44	文件夹			
History	2021/3/4 10:42	文件夹			
🔄 input.dat	2021/3/4 10:42	Universal Mechanism Data File	7 KB		
nput.xv	2021/3/4 11:00	UM Document. Initial conditions.	1 KB		
🛋 object.bmp	2021/3/4 10:42	BMP 文件	226 KB		
🖻 刚柔耦合系统.imc	2021/3/4 10:47	UM Document. Binary file of modal coordinates for FEM subsystems.	212 KB		
🐚 刚柔耦合系统.sgr	2021/3/4 10:47	UM Document. Binary file of calculated variables.	47 KB		
🐚 刚柔耦合系统.tgr	2021/3/4 10:47	UM Document. List of calculated variables.	4 KB		
🐚 刚柔耦合系统.tmc	2021/3/4 10:47	UM Document. Description file for modal coordinates for FEM subsystems.	1 KB		
🖻 刚柔耦合系统.var	2021/3/4 10:46	UM Document. List of variables.	4 KB		
📓 柔性梁.ini	2021/3/4 11:00	配置设置	3 KB		

图 2-129





# 2.5 实例五: 自动控制系统



图 2-130 所示为一个典型的自动控制系统,该模型由两个刚体(人体和平衡 车)组成。惯性参考系原点位于平衡车走行面,平衡车沿 X 轴有平动自由度,初 始速度 V。人体相对平衡车具有绕 Y 轴转动自由度,初始转动一定角度。在重力 作用下,人体会向下倾,系统靠作用在平衡车上的时变控制力维持平衡。

本例用到的模块: UM Base、UM Control。





### 2.5.1 机械系统建模

- 运行 UM Input 程序,新建一个 UM 模型,另存为 "D:\UM 培训教程\我 的 UM 模型\自动控制系统"。
- 2) 从路径 "D:\UM 培训教程\几何素材\自动控制系统" 依次导入几何素材 平衡车.img 和人体.img, 如图 2-131。



图 2-131

3) 创建第一个刚体,命名为平衡车,从 Image 下拉菜单选择几何平衡车, 设置质量为 5,如图 2-132。







4) 创建第二个刚体,命名为人体,从 Image 下拉菜单选择几何人体,设置 质量为75,转动惯量为(0,20,0),质心坐标为(0,0,1),如图 2-133。





5) 创建第一个铰, Body1 选择 Base0, Body2 选择平衡车, Type 为 Translational, Body1 的铰点为(0, 0, 0.2), Body2 的铰点为原点, 平 动自由度方向为X轴,如图 2-134。





7) 先选中左侧模型树 **T-forces**, 然后点击右侧按钮 [◆], 添加一个时变力 元, Body1 选择 Base0, Body2 选择平衡车,在 Force 第一栏定义一个符 号fx,初始值为0,如图 2-136。



图 2-136





## 2.5.2 控制系统建模

- 选择开始菜单 → Universal Mechanism 9 x64 → Tools → UM Block
   Editor (或在 UM 安装路径找到程序 BlockEditor.exe,双击运行)。
- 2) 从 Inputs and Outputs 模块分别将 Input 和 Output 拖入图板一次,分别 对应控制系统的输入和输出信号,如图 2-137。



图 2-137

 从 Algebra and logic 模块将 Gain 比例环节拖入图板三次,分别双击设置 系数(增益)为50,20,200,如图 2-138。









4) 从 TAC 模块将 Intergator 积分器拖入图板一次,如图 2-139。



5) 从 TAC 模块将 Real Differential 微分器拖入图板一次,双击设置时间常数 0.001,如图 2-140。



图 2-140





6) 从 Alegbra and logic 模块将 Summator 加法器拖入图板一次,双击设置 输入通道为 3,如图 2-141。



图 2-142

8) 保存到自动控制系统模型目录下,命名为 control.be,然后关闭 Block Editor。





## 2.5.3 动力学仿真

 运行 UM Simulation 仿真程序,选择菜单 File → Open...,加载模型。 也可通过双击模型文件 input.dat 直接打开模型。拖动鼠标自由调整动画 窗口的大小和位置(一般不要最大化),在动画窗口通过鼠标和工具栏按 钮自由调整模型视图,如图 2-143。

<mark>ම</mark> UM - Simulation - d:\um培训教程\我的um模型\目动控制系统	
File Analysis Scanning Tools Windows Help	
228 00 Q Q Q 4 L 4 L 4 L 4 2 C C C Q Q 4 L 4 2 C C C Q Q 4 L 4 2 C C C C Q 4 L 4 2 C C C C C C C C C C C C C C C C C C	Animation window Speed unit

图 2-143

2) 选择主菜单 Tools → External library Interface, 弹出外部库向导界面。



图 2-144





3) 点击按钮 ➡, 添加一个外部库, 如图 2-145。

*>* Wizard of external libraries				
🗁 🖰 🕇 🕂 🗊	Path to external library			
External libraries (*.dll, *.be)	Model name (none) State variables 0			
	Inputs	Outputs	Parameters	
	× (none)	× (none)	(none)	
ОК Арріу	Cancel			



4) 点击按钮⁶,加载控制系统"D:\UM 培训教程\我的 UM 模型\自动控制 系统\control.be",如图 2-146。

*D* Wizard of external libraries				
External libraries (*.dll, *.be)       External library 1	Path to external library D: \UM培训教程\我的UM模型\自动控制系统\control.be Model name control State variables 0			
	Inputs In1 < (none)	Outputs  Outputs  Outputs  Outputs	Parameters Gain_Coef = 50 Gain1_Coef = 20 Gain2_Coef = 200 Integral_InitialValue = 0 RealDifferential_T = 0.00100	
OK Apply	Cancel			

图 2-146

	universal mechanisi	m Congsuan
5)	) 选择主菜单 <b>Tools</b>	→ Wizard of variables打开变量向导(或点击工具
	栏按钮 🕻 ), 定义 Inputs 下方的 In1	人体绕 Y 轴转动的角度变量,并拖入控制系统的 , 作为输入信号, 如图 2-147。
ſ	📑 Wizard of variables	
	a-b Expression User variables ジVariables for group of bodies (	Image: Selected       Image: Selected
		人体
	☑ 入体	Use orientation at zero coordinates
		Rot. vector     Ang. velocity     Ang. acceleration
		Component O X O Y O Z O I V I O V
		Resolved in SC of body
		Base0
		Relative to body Base0
	ang:y(人体)	ctor of rotation of body 人体 relative to Base0, SC Base0, projection Y
	ang:y(人体)	
	1	图 2-147
6	) 双击控制系统的 (	Putputs下方的 $Out1$ ,从下拉菜单中选择符号 fx,作为
- ,	输出信号,加图 2	148.
	•V• Wizard of external libraries	external library
		e训教程\我的UM模型\自动控制系统\control.be

External libraries (*.dl, *.be)	Path to external library D:\UM培训教程\我的UM模型\自 Model name contr	动控制系统\cor <b>ol</b>	ntrol.be
	State variables 0 Inputs ✓ In1 < ang:y(人体) - Vec	Outputs	Assign external library -> Model parameters Assign external library output value to the following UM parameter: fx Value of UM parameter when connection is off: 0
			Assign also No identifiers of the same name
OK Apply	Cancel		

图 2-148





7) 勾选 External library 1,并保存,如图 2-149。

↔ Wizard of external librari	es		23
🖙 🖰 🕇 🖬 🗊	Path to external library	\/白-トート☆町でが\」、つ	-
External libraries (*.dll, *.be)	Model name co State variables 0	Igajitzeni,koku (Gladine) [1] 另存为	
	Inputs		<ul> <li>         ・</li></ul>
	✓ In1 < ang:y(人体) - Vec	组织 ▼ 新建文件夹	≣≣ ▾ (?
		▲ <u>名称</u> ▲	修改日期 类型
		GOMeshes	2021/3/4 11:32 文件夹
OK Apply	Cancel	History	2021/3/4 TE2/ XIPX
		文件名(N): 国动控制系統.sim	``````````````````````````````````````
		保仔奕型(1): (^.sim)	
		▲ 隐藏文件夹	保存(S) 取消

#### 图 2-149

8) 创建控制力元的矢量 Fv,并拖入动画窗口,如图 2-150。

Wizard of variables	Reactions ifiers s
<ul> <li>▶ External libraries 点 Angular variables 上 Linear variables a+b Expression User variables 計</li> <li>Coordinates ③ Solver variables 示 All forces id Identi</li> <li>ジ Variables for group of bodies ③ T-Forces ▲ Joint forces</li> <li>● 自动控制系统</li> <li>○ 控制力元</li> </ul>	Reactions ifiers s
Coordinates     O Solver variables     I forces     id Identi      Variables for group of bodies     Variables for group of bodies     O     I-Forces     All forces     I Identi      O     Iont forces     Iont forces     Iont     Iont	ifiers s
ジ Variables for group of bodies     Image: Constraint of the second seco	s
<ul> <li>□ ☑ 自动控制系统</li> <li>□ ☑ 控制力元</li> <li>□ Ype</li> </ul>	<u>^</u>
<ul> <li>☑ 控制力元</li> <li>☑ 打ype</li> </ul>	
Type	
(a) or all a constant	
Component ○ X ○ Y ○ Z ○   V   ● V	
Resolved in SC of body	
Base0	-
Acts on	
Obody 1: Base0	
● body 2: 平衡车	~
Fv(控制力元) T-Force: force (控制力元), Vector	<b>7</b>

图 2-150

9) 选择主菜单 Analysis → Simulation,弹出仿真控制面板。选择求解器 Park,设置仿真时间为1s,数据步长为0.0002s,容差为1e-7,勾选选





项 Computation of Jacobian, 如图 2-151。

Object simulation inspect	or				
Solver Identifiers	Initial conditions	Object variables	XVA	Information	Tools
Simulation process parameter	s Solver options Typ	e of coordinates for bod	lies		
Solver BDF ABM Park Gear 2 Park Parallel Time Step size for animation and d Error tolerance Delay to real time simulatic Keep system matrix decom Computation of Jacobian Block-diagonal Jacobia	Type of solution Null space method (N Range space method C Type of solution Range space method C Type of solution 0.0002 1E-7 on nposition n	vSM) d (RSM)			
Integration		Message			Close

图 2-151

10) 切换到 **Initial conditons**页面,设置平衡车初始速度 2 m/s,人体相对平 衡车初始角度 0.5 rad,如图 2-152。

C	Object sir	mula	ation	n inspec	tor									
	Solver	r	Id	lentifiers	Init	ial con	ditions	Object	variable	s XVA		Information	Te	ools
	Coordinat	es	Con	straints o	n initial co	ndition	IS							
L		<b>1</b>	•	÷	Θ	=0 V	=0 💆							
		ŵ	4	Coordin	ate		Velocity			Comment				
	1.1			0			2			jBase0_平衡	车 1c			
	1.2			0.5			0			j平衡车_人(	‡ 1a			
	< Messa	ge	dx	(=	0.1	da=[	0.1							>
			Integ	gration				Mes	sage				Close	1







11) 点击 Integration,开始计算。

ල UM - Simulation - d\umfail)級俚受認知m爆型\目动控制系统 File Analysis Scanning Tools Windows Help		
228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Process parameters ~	Speed unit ○ km/h
◎ 〒 〒 〒 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		
Q		
Animation window		
ee		
	Process parameters Simulation time (s) 0.211 Ourston time (s) 0.211 Ourston time (s) 0.211 Ourston time (s) 0.289825- Staps size (s) 0.0002 Pause 21%	

#### 图 2-153

12) 请读者自行尝试不加控制系统的仿真工况,如图 2-154。

+≫ Wizard of external librarie	•S		
External libraries (*.dl, *.be)       External library 1	Path to external library D: \UM培训教程\我的UM模型\自 Model name contro State variables 0	动控制系统\control.be rol	<b>e</b> 2
	Inputs ✓ In1 < ang:y(人体) - Vec	Outputs ▼	Parameters Gain_Coef = 50 Gain1_Coef = 20 Gain2_Coef = 200 Integral_InitialValue = 0 RealDifferential_T = 0.00100
OK Apply	Cancel		

图 2-154





# 3. 轨道交通系统动力学建模与仿真

## 3.1 铁路交通



图 3-1

图 3-1 所示为一个典型的铁道车辆多刚体系统模型,该模型由一个车体和两 个转向架子系统组成。其中转向架子系统里有一个构架、两个轮对和四个轴箱,构 架与轮对之间有一系悬挂,车体和构架之间有二系悬挂,模型共计 50 个自由度。 本例用到的模块: UM Base、UM Subsystem、UM Loco。





3.1.1 多刚体车辆动力学建模

#### 3.1.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\铁 道车辆多刚体模型"。
- 从"D:\UM 培训教程\几何素材\铁道车辆多刚体模型"依次导入建模所 需的几何素材轴箱.img,构架.img,一系弹簧.img,二系弹簧.img 和减 振器.img。
- 将轴箱几何重名为轴箱 F,复制生成第二个,命名为轴箱 R,将其绕 Z 轴旋转 180°,如图 3-2。



图 3-2

创建第一个刚体,命名为轴箱 FL,选择几何轴箱 F,定义质量 50,转动 惯量(1,5,5),如图 3-3。



图 3-3





- 5) 复制生成第二个刚体,命名为轴箱 FR。
- 6) 复制生成第三个刚体,命名为轴箱 RR,选择几何轴箱 R。
- 7) 复制生成第四个刚体,命名为轴箱 RL。
- 8) 创建第五个刚体,命名为构架,选择几何构架,定义质量参数 mframe (1605),转动惯量(1216,1136,2219),质心坐标(0,0,-0.09),如 图 3-4。



9) 选中左侧模型树 Subsystems,点击右侧按钮[↓],添加一个子系统,从下 拉菜单中选择 Wheelset,命名为轮对 F,在 General 页面设置名义半径 0.45,滚动圆跨距之半 0.7465,如图 3-5。



图 3-5





10) 切换到 Identifiers 页面,设置轮对质量 1000,侧滚和摇头转动惯量 800,点头转动惯量 100,如图 3-6。

	Edit subsyste	<u>em</u>
General Position	Identifiers	Inertia parameters
Whole list		
Name	Expression	Value
mwset	1000	
ixwset	800	
iywset	100	
axlelength	2.2	
y_axlebox	1.05	
/		

图 3-6

11) 切换到 Position 界面,设置轮对 F 子系统在总体坐标系中的位置,纵向 前移 1.5,垂向上移 0.45,如图 3-7。



图 3-7

12) 复制生成第二个子系统,重命名为轮对 R,设置 Position, X = -1.5。







13) 创建第一个铰, Body1 选择轮对 F.Wset, Body2 选择轴箱 FL, 类型为
 Rotational, 铰点坐标分别为(0, 1.025, 0)和(0, 0, 0),转动轴都
 选择 Y 轴, 如图 3-9。



- 14) 复制生成第二个铰, Body2 更改为轴箱 FR, Body1 铰点坐标修改为 (0, -1.025, 0)。
- 15) 复制生成第三个铰, Body1 更改为轮对 R.Wset, Body2 更改为轴箱 RR。
- 16) 复制生成第四个铰, Body2 更改为轴箱 RL, Body1 铰点坐标修改为
   (0, 1.025, 0)
- 17) 创建第五个铰, Body1 选择 Base0, Body2 选择构架, 类型为6 d.o.f., 铰点坐标分别为(0,0,0.73)和(0,0,0)。切换到整体视图,如图 3-10。



- 96 -





3.1.1.2 一系悬挂

 选中左侧模型树 Linear forces,点击右侧按钮[▲],创建第一个一系弹簧 力元,命名为一系弹簧 FL。Body1 选择轴箱 FL,Body2 选择构架,选 择几何一系弹簧,勾选 Automatic computation for 2nd body,输入弹簧 下点和上点坐标(0,0,0.2)和(0,0,0.5),如图 3-11。



图 3-11

 在 Parameters 页面,定义弹簧预压力 fz1,回车,在弹出窗口点 Accept,然后到左侧符号列表双击 fz1,在弹出窗口定义表达式:
 9.81*(mcarbody/8+mframe/4),这时程序会自动创建新的符号参数 mcarbody,保持缺省值为0即可。



图 3-12





3) 点击 Stiffness matrix 栏的按钮, 输入刚度矩阵, 如图 3-13, 其中 kxy 1 为纵向和横向刚度(9.5e5), kz 1 为垂向刚度(9.0e5)。

Matrix of lin	ear force elem	nent			×
Elements					
coordinate-coord	inate		coordinate-angle		
kxy_1 C	C	C		-kxy_1*0.3/2 C	C
C	kxy_1 C		kxy_1*0.3/2	C	C
C	C	kz_1 C		C	C
angle-coordinate			angle-angle		
C	kxy_1*0.3/2	C	10000	C	C
-kxy_1*0.3/2 C	C	C	C	10000	C
C	C	C		C	1000 C
				ОК	Cancel

图 3-13

- 4) 复制生成第二个一系弹簧力元,重命名为一系弹簧 FR,更改 Body1 为 轴箱 FR。
- 5) 复制生成第三个一系弹簧力元,重命名为一系弹簧 RR,更改 Body1 为 轴箱 RR。
- 6) 复制生成第四个一系弹簧力元,重命名为一系弹簧 RL,更改 Body1 为 轴箱 RL。切换到整体视图,如图 3-14。







- 7) 选中左侧模型树 Bipolar forces,点击右侧按钮[➡],创建第一个一系减振器力元,命名为一系垂向减振器 FL,Body1 选择轴箱 FL,Body2 选择构架,选择几何减振器。
- 8) 定义减振器下点和上点坐标分别为(0.25, 0, -0.04),(1.76, 1.025, 0.215),选择力元类型 linear,定义阻尼系数 1e4,如图 3-15。



图 3-15

- 9) 复制生成第二个一系减振器力元,更改 Body1 为轴箱 FR,修改减振器 上点坐标为(1.76, -1.025, 0.215)。
- 10) 复制生成第三个一系减振器力元,更改 Body1 为轴箱 RR,修改减振器 下点和上点坐标分别为(-0.25,0,-0.04),(-1.76,-1.025,0.215)。
- 11) 复制生成第四个一系减振器力元,更改 Body1 为轴箱 RL,修改减振器 上点坐标为(-1.76, 1.025, 0.215)。切换到整体视图,如图 3-16。



www.tongsuan.cn





12) 选中左侧模型树 Special forces,点击右侧按钮[➡],创建第一个转臂节点

力元,命名为转臂节点 FL,从下拉菜单中选择 Bushing, Body1 选择轴 箱 FL, Body2 选择构架,如图 3-17。



图 3-17

13) 在 Position\Body1 页面输入连接点坐标(-0.53, 0, -0.04), 然后勾选
Autodetection; 在 Description 页面定义刚度, 纵向平动刚度 1e7, 横向
平动刚度 5e6, 垂向平动刚度 1e7, 绕 X 轴转动刚度 1e4, 绕 Z 轴转动刚
度 1e4, 如图 3-18。

Body1: Body2: 轴箱FL ▼ 构架 ▼	
Type: 🕒 Bushing 👻	
Autodetection	Position Description
Position Description	Type: Linear
Body 1 Body 2	CX 1.0e7
III III IIII IIII IIIIIIIIIIIIIIIIIIII	CY 5.0e6
1,7 Visual assignment	CZ 1.0e7
	CAX 1.0e4
	CAY
y:	CAZ 1.0e4
z: -0.04 C	DX
Datation	

#### 图 3-18

- 14) 复制生成第二个转臂节点力元转臂节点 FR,更改 Body1 为轴箱 FR。
- 15) 复制生成第三个转臂节点力元转臂节点 RR,更改 Body1 为轴箱 RR,修 改连接点坐标为(0.53,0,-0.04)。
- 16) 复制生成第四个转臂节点力元转臂节点 RL,更改 Body1 为轴箱 RL。





3.1.1.3 二系悬挂

1) 选中左侧模型树 Linear forces,点击右侧按钮[♣],命名为二系弹簧 L, Body1 选择构架, Body2 选择 External, 选择几何二系弹簧, 勾选 Automatic computation for 2nd body,在 Body1 页面输入弹簧下点和上 点坐标(0,0.94,0)和(0,0.94,0.2),如图 3-19。



图 3-19

2) 在 Parameters 页面, 定义弹簧预压力 fz2, 回车, 在弹出窗口点 Accept, 然后到左侧符号列表双击 fz2, 在弹出窗口定义表达式: 9.81*mcarbody/4, 如图 3-20。

Name	Expression	Value
v0	20	
mframe	1605	
mcarbody	0	
fz1	9.81*(mcarbody/8+r	3936.2625
kxy_1	9.500000E+5	
kz_1	9.000000E+5	
fz2	9.81*mcarbody/4	0

Position Parameters	]	
Stationary force		
	C fz2	C
Linear	🔘 Bilinear	
O Linear Stiffness matrix:	Bilinear (none)	







3) 点击 Stiffness matrix 栏的按钮,输入刚度矩阵,如图 3-21,其中 kxy_2 为纵向和横向刚度(1.25e5),kz_2 为垂向刚度(1.5e5),如图 3-21。

Matrix of lin	×				
Elements					
coordinate-coord	inate		coordinate-angle		
kxy_2	C			-kxy_2*0.2/2 C	C
C	kxy_2	C	kxy_2*0.2/2	C	C
C	C	kz_2 C		C	C
angle-coordinate			angle-angle		
C	kxy_2*0.2/2 🗅	C	10000		C
-kxy_2*0.2/2 C	C	C		10000	C
C	C	C		C	1000 C
				ОК	Cancel

#### 图 3-21

4) 点击 Damping matrix 栏的按钮, 输入垂向阻尼系数 10000, 如图 3-22。

Matrix of lin		×			
Elements					
-coordinate-coord	inate		coordinate-angle		
C	C	C		C	C
C	C	C	C	C	C
C	C	10000		C	C
angle-coordinate			angle-angle		
C	C	C	C	C	C
C	C	C	C		C
C	C	C			C
		_		ОК	Cancel

#### 图 3-22

5) 复制生成第二个二系弹簧力元二系弹簧 R,修改弹簧下点和上点坐标 (0,-0.94,0)和(0,-0.94,0.2)。





- 6) 选中左侧模型树 Bipolar forces,点击右侧按钮[♣],命名为二系横向减振 器 F, Body1 选择构架, Body2 选择 External, 选择几何减振器。
- 7) 定义减振器左点和右点坐标分别为(0.24, 0.24, 0.105),(0.24, -0.36, 0.105), 勾选 Autodetection。
- 8) 选择力元类型 Viscous-elastic, 定义刚度系数 5e6, 阻尼系数 5e4。



图 3-23

9) 复制生成第二个横向减振器力元二系横向减振器 R,修改减振器两个连 接点坐标分别为(-0.24, -0.24, 0.105),(-0.24, 0.36, 0.105)。





- 10) 复制力元,重命名为抗蛇行减振器L,修改减振器两个连接点坐标分别 为(-0.16, 1.315, -0.17), (0.54, 1.315, -0.17)。
- 11) 更改力元类型为 Nonlinear viscous-elastic。



图 3-24

12) 点击 Spring 栏的按钮 , 定义减振器串联接头刚度 1e7 (N/m) (横坐标 为弹簧变形,纵坐标为弹簧力)。



图 3-25




13) 点击 Damper 栏的按钮 ,定义减振器非线性特性(横坐标为相对速 度)。



图 3-26

- 14) 复制力元,重命名为抗蛇行减振器 R,修改减振器两个连接点坐标分别 为(-0.16, -1.315, -0.17), (0.54, -1.315, -0.17)。
- 15) 点击 切换到整体视图,点击中间动画窗口工具栏图标 F,从下拉菜单 选择 Show all,可看到每个元素都有相应标记。



图 3-27

至此,我们完成了转向架系统一系和二系的建模,记得保存一下。





3.1.1.4 整车装配

1) 左侧选中模型树 Object, 在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个转向架模型压缩成了一个子系统,便于整体操 作。



图 3-28

2) 重命名为转向架 F,在 Position 定义 X 平动 9。



图 3-29

- 3) 复制生成第二个子系统,重命名为转向架 R, Position 定义 X 平动-9。
- 4) 点击 Edit subsystem, 进入转向架 R 子系统。
- 5) 将构架几何绕 Z 轴旋转 180°。







图 3-30

- 6) 点开 Bipolar forces,修改第一个抗蛇行减振器力元的连接点坐标为 (0.16, 1.315, -0.17),(-0.54, 1.315, -0.17);修改第二个抗蛇行减振 器力元的连接点坐标为(0.16, -1.315, -0.17),(-0.54, -1.315, -0.17)。
- 7) 点击 Accept,完成修改,退出子系统。
- 8) 从"D:\UM 培训教程\几何素材\铁道车辆多刚体模型"导入几何素材车体。
- 9) 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择转向架 F 子系统里的 mcarbody 参数,将其设置为 40000 (kg),弹出提示,点击 OK,这样将两个转向架子系统里的 mcarbody 参数也都赋值 40000,如图 3-31。



图 3-31



11) 最后,我们需要将车体和两个转向架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的 Body2 都选择为一个虚拟物体 External,两个连接点的坐标都在 Body1 坐标系中定义的。在左侧模型 树选择 Connection,右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系原点(其实车体上任意点都 行),这样就用车体替换了子系统里的 External 虚拟体。



图 3-35

12) 点击 Summary, 检查是否有逻辑错误, 保存模型, 关闭 UM Input 程序。





# 3.1.2 多刚体车辆动力学仿真

1) 运行 UM Simulation 程序,加载铁道车辆多刚体模型。自由调整动画窗 口大小、位置和视图方向。

Q UM - Simulation - d:\um培训教程\我的um模型\铁道车辆多别体模型 File Analysis Scanning Tools Windows Help



图 3-36

 打开仿真控制面板,选择 Park 求解器,设置仿真距离 1500m,设置数据 采样步长为 0.005s,勾选 Computation of Jacobian。

Object simulation in	nspector					
Solver Iden	tifiers Initial cond	itions Object variables	Rail/Wheel	XVA	Information	Tools
Simulation process par	rameters Solver optio	Type of coordinates for bo	dies			
Solver	Type of solution					
BDF  ABM	Null space m	ethod (NSM)				
Park						
Gear 2     Park Parallel	Range space	method (RSM)				
Distance Vahiele diet		1 500 🚍				
Step size for animation	n and data storage $0.0$	05				
Error tolerance	1E-	6				
Delay to real time s	simulation					
Keep system matrix	x decomposition					
Block-diagonal	cobian Jacobian					
Jacobian for w	neel/rail forces					
Stop simulation on	wheel derailment					
Integ	ration	Message			Close	
Integ	ration	Message			Close	

图 3-37





3) 切换到 Railvehicle→Track→Model and parameters 页面,设置轨底坡

0.025rad,轮轨型面坐标原点横向间距 6.05mm,轨道模型为无质量钢

轨,卜万可定义轨道整体刚度和阻尼	轨,	,下方可定义轨道整体刚度和阻尼。
------------------	----	------------------

Solver Identifiers	Initial conditions	Object variables	Rail vehicle	XVA	Information	Tools
- B   <u>k</u> '7 [ ¹ ]	Ÿ.					
ack Wheel/Rail Contact F	orces Speed Wea					
Iodel and parameters Macroge Geometry Rail inclination (rad) SCR-SCW distance (mm) Track model Massless track	0.025 6.05	s Image				
Moving rigid body track Flexible track Parameters						
Type of stiffness parameter def Number	inition		OCurve			
Stiffness per one rail Vertical stiffness (N/m) Lateral stiffness (N/m) Torsional stiffness (Nm/rad)	44 000 000 18 000 000 6.6E25					
Torsional stiffness is taken in	to account					
Damping per one rail Vertical damping (Ns/m) Lateral damping (Ns/m)	400 000 100 000					

图 3-38
 4) 切换到 Track→Macrogeometry 页面,选择 Curve 类型轨道,定义直线 段长度 60m,缓和曲线长度 440m,圆曲线长度 500m,圆曲线半径 5500m,超高 0.15m。

Object simulation inspector				
Solver Identifiers Initial con	ditions Object variables	Rail vehicle XVA	Information	Tools
🖙 🖪 📐 କେ 🖓 🛱				
Track Wheel/Rail Contact Forces Sp	eed Wear			
Model and parameters Macrogeometry	Irregularities Image			
		0	From flo	
Curve	O Switch	0	From the	
First section				
L1 60				
P11 440				
S1 500				
H1 0.15 L.4				
P12 440				
dY1 0				
L 1440				
V' 71.570316				
Smoothing 8,00				
Integration	Mess	age		Close







5) 切换到 Track → Irregularities 页面,选择 Uneven,不平顺类型为

From file,	然后分别设置左、	右轨垂向和横向的不平顺,	如图	3-40
------------	----------	--------------	----	------

Object simulation inspector					
Solver Identifiers Initial cond	tions Object variables	Rail vehicle	XVA	Information	Tools
	1				
Track Wheel/Rail Contact Forces Spe	d Wear				
Model and parameters Macrogeometry Ir	egularities Image				
Even		<ul> <li>Uneven</li> </ul>			
Type of irregularities From file		OIdentifiers			
O Deterministic		O File +determinis	stic		
← Ⅰ Vertical irregularities Left rail D: UM培训教程\不平顺	羊本\铁路\Y_Left_3km.way				-
Right rail D:\UM培训教程\不平顺	单\次的\ 洋本\铁路\Y Right 3km.way	,			
Factor 1					
Lateral irregularities					
Left rail D:\UM培训教程\不平顺	洋本\铁路\Z_Left_3km.way				
Right rail D: \UM培训教程 \不平顺	¥本\铁路\Z_Right_3km.way	1			
Factor 1					
Integration	Mes	sage			Close

- 图 3-40
- 6) 切换到 Wheel/Rail → Wheels → Profiles 页面,点击+按钮,将

Chinese LMA.wpf 车轮踏面添加进来,然后将其选中,点右键,选择菜 单 Assign to all,赋给每个车轮。

Object si	mula	uon inspector						
Solve	r	Identifiers Initial conditions	Object va	ariables	Rail vehicle	XVA	Information	Tools
🖻 🖻	1	5 F1 🕅						
Track	Wheel	Rail Contact Forces Speed Wea	r					
Wheels	Rails							
Profiles	Out	of-round Radii difference						
Set of	wheel	profiles						
+	C:\Us	ers\Public\Documents\UM Software Lab	Universal M	lechanis	m\9\rw\prf\newloco	w.wpf		
	C. (05	iers (Public (pocuments (primatic cab	toniver same	Add	wheel profile			
			m	Dele	te selected profi	les		
				Acciu	n to all			
				Assi	gn to an n in naofile adite			
			_	Ope	n în prome edito	″		
	ws	Left wheel	Ê	Cop	/ file path			
	1	Chinese LMA.wpt		Show	v file in folder			
	2	Chinese LMA.wpf	_		Chinese Lim	a.wpr		
	3	Chinese LMA.wpf			Chinese LM/	A.wpf		
	4	Chinese LMA.wpf			Chinese LM/	4.wpf		
	L							
		Integration		Mes	sage		(	Close

图 3-41





7) 切换到 Wheel/Rail → Rails 页面,点击+按钮,将 CN_Rail_60.rpf 钢

轨外形添加进来,然后将其选中,点**右键**,选择菜单 Assign to both rails,赋给左右轨。

Wheels Rails   Left rail   Profile   C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf   Polle   Profile 2   (none)   Right rail Profile 2 C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Profile 2 (none) Set of rail profile For all profile Profile 2 (none) Set of rail profile G:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Add rail profile Delete selected profiles Assign to left rail Assign to both rails Gauge measuring interval (mm) Interpolation control Copy file path Chuy Glui is fullen	rack Wh	eel/Rail	Contact	Forces	Sp	eed	Wear							
Left rail Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Double profile Profile 2 (none) Right rail Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Double profile Profile 2 (none) Set of rail profiles  t Add rail profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Add rail profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\UM	Wheels R	ails												
Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf  Double profile Profile 2 (none) Right rail Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf  Double profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf  Profile 2 (none) Set of rail profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf  Profile 2 (none) Set of rail profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf  Profile 2 (none) Set of rail profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf COpy file path Copy file path Copy file path Change file is folders	Left rail													
□ Double profile         Profile 2       (none)         Right rail         Profile       C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf         □ Double profile         Profile 2       (none)         Set of rail profiles         C:\Users\Public\Documents\UM         ●       ●         □ Double profile         Profile 2       (none)         Set of rail profiles         ●         ●       Delete selected profiles         Assign to left rail         Assign to both rails         Open in profile editor         ●       Copy file path         Copy file path         Copy file path         Charge file in folder	Profile	C:\U	sers\Publi	c\Docun	nents	\UM So	ftware Lab\Ur	niversal Mecha	nism\9\rw	prf\CN_Rai	l_60.rpf			F
Profile 2 (none)	Double	profile												
Right rail Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Double profile Profile 2 (none) Set of rail profiles C:\Users\Public\Documents\U + Add rail profile Delete selected profiles Assign to left rail Assign to left rail Assign to both rails Gauge measuring interval (mm) Interpolation control Copy file path Change fie is folden	Profile 2	(non	e)											222
Profile C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf   Double profile Profile 2 (none) Set of rail profiles  t C:\Users\Public\Documents\UM software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf Add rail profile Delete selected profiles Assign to left rail Assign to left rail Assign to both rails  Gauge measuring interval (mm) Interpolation control C:\Users\Public\Documents C:\Users\Public\Documents C:\Users\Public\Documents\Um Software Lab\Universal Mechanism\9\rw\prf\CN_Rail_60.rpf C:\Users\Public\Documents\Um Software Lab\Um Software	Right rail													
Double profile         Profile 2       (none)         Set of rail profiles         +       C:\Users\Public\Documents\Users         Delete selected profiles         Assign to left rail         Assign to both rails         Gauge measuring interval (mm)         Interpolation control	Profile	C:\U	sers\Publi	c\Docun	ents	UM So	ftware Lab\Ur	niversal Mecha	nism\9\rw	prf\CN Rai	1 60.rpf	 		F
Profile 2 (none)	Double	profile										 		P.
Set of rail profiles	Drofile 2	lloon	-)											87
Set of rail profiles       C:\Users\Public\Documents\U       Add rail profile         Image: the selected profile       Image: the selected profiles       Assign to left rail         Assign to right rail       Assign to both rails       Open in profile editor         Gauge measuring interval (mm)       Interpolation control       Open in profile editor	FIONE 2	(non	-)										_	<b>1</b>
(c) Users Public Documents U           + Add rail profile           + Add rail profile             (c) Users Public Documents U         + Add rail profile           Delete selected profiles           Assign to left rail         Assign to left rail         Assign to both rails             Gauge measuring interval (mm)         Interpolation control           Open in profile editor             Interpolation control           Open in profile editor	Set of rail	profiles								- 4	-			
Image: Constraint of the selected profiles       Assign to left rail       Assign to left rail       Assign to both rails       Gauge measuring interval (mm)       Interpolation control       Interpolation control	+	Users Pu	blic (Docur	nents (U	+	Add	rail profile		v (prf (CN	Rail_60.rp				
Gauge measuring interval (mm)     Open in profile editor       Interpolation control     Open in fielden	Û				Û	Dele	te selected	profiles	I					
Gauge measuring interval (mm)     Open in profile editor       Interpolation control     Dopy file path						Assi	gn to left ra	il	I					
Assign to both rails       Gauge measuring interval (mm)     Open in profile editor       Interpolation control     Copy file path						Assi	gn to right	rail	L					
Gauge measuring interval (mm)     Open in profile editor       Interpolation control     Copy file path						Assi	gn to both	rails						
Interpolation control	Gauge mei	asuring in	terval (mr	n)		Ope	n in profile	editor						
Chan file in folder	Inter	nolation	ontrol	i	ß	Сор	y file path							
Show file in folder	Inter	poladorri				Sho	w file in fold	ler						
Integration Message Close		Inte	egration		_			Message	:			Close		

图 3-42

8) 切换到 Rail vehicle → Contact → Contact forces 页面,选择 FASTSIM 蠕滑模型。

Object simulation inspector					
Solver Identifiers Initial	conditions Object variables	Rail vehicle	XVA	Information	Tools
🖴 🖪 🛓 🖓 🖓					
Track Wheel/Rail Contact Forces	Speed Wear				
Contact forces Friction Static loads	Options of profiles				
Model of creep forces Mueller FASTSIM	0	FASTSIM_A			
Simplified contact geometry Critical speed for creep Contact parameters	0.10				
Young's modulus Poisson's ratio	210 000 000 000				
Shear yield stress	300 000 000				
Width of strip (mm)	10.00				
Minimum number of strips	10				
Number of elements	20				
Integration	Message	e		Close	

图 3-43





9) 切换到 Rail vehicle → Speed 页面,选择匀速模式 v=const,并设置速度 控制力作用于车体,如图 3-44。

Dbject simulation inspector					
Solver Identifiers Initial conditi	ions Object variables	Rail vehicle	XVA	Information	Tools
금 🗄 🛓 '슈 또칠 💱 Track Wheel/Rail Contact Forces Spee	d Wear				
Mode of longitudinal motion					
○ Neutral	C	Profile			
● v=const	0	v=0			
Speed control parameters					-1
Boint 0,000	0.000		1 000		
Amplifier 100000			1.000		
Integration	Messag	e		Close	

图 3-44

10) 切换到 Identifiers → List of identifiers 页面,设置车辆初始速度 v0 为 300,在弹出窗口点击 OK,如图 3-45。

Object	t simulatio	n inspecto	r					
So	olver I	dentifiers	Initial conditions	Object variables	Rail vehicle	XVA	Information	Tools
List of	fidentifiers	Identifier co	ontrol					
Who	le list	铁道车	三辆多刚体模型	ldentifiers of the	same name	×		-
Nam	ne	Expressio	n Value	≤ 转向架F.v0 (20)				
v0		300		△ 转回架R.v0 (20)				
mca	arbody	4.000000	0E+4					
				OK Canc	el			
	Ir	ntegration		Message			Close	

图 3-45





11) 选择主菜单 Tools→Options,或直接在工具栏上修改车辆初始速度单位 为 km/h。这里的单位只对 v0 参数有效,计算结果均为国际单位(m,

Bug reports Visualization Wear control parameters
General Autosave Format of numbers Export to MS Excel
General
Automatically load the last model
Automatically remove incompatible variables
Z-axis directed downward (while computing scalar variables)
Temporary directory:
C: \Users \86187 \AppData \Local \Temp \
Graphical windows
Default pull-down tool panel for graphical windows
Double column text file
Prefix for comments:
Measure unit for speed identifier v0
Speed unit
● km/h () m/s
Default speed unit: m/s
OK Cancel

12) 打开**变量向导**,在 Wheel/Rail 页面创建第一轮对左轮脱轨系数变量,并 拖入一个绘图窗口。

Variables for gro	oup of bodies ≶	Linear forces	Joint forces	Bipolar forces All forces	🛆 An	gular variables	Linear variab
a+b Expression	Vheel/Rail	Track coord	inate system	Railway veh	ide	H Wheelsets	User variable
□ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	多刚体模型	Selected					
🖻 🔳 转向架	!F	wset 1 left					
🖻 🔳 Lef	t wheels	Name	Comment				
	wset 1 left	ь	Lateral semi-a	is of contact patch	(mm)		
		AdhArea	Adhesion area				
	nt wheels	Penetration	Maximum geor	netric penetration (	mm)		
	wset 2 right	Variables for w	/heel				
□ □ 転向架	R	CSafety	Derailment saf	etv factor (rus)			
🖨 🗌 Lef	t wheels	CSafetyRefined Refined safety factor (rus)					
	wset 3 left	Y/Q(L/V)	Nadal criterion				
	wset 4 left	Weinstock	Weinstock crit	erion			
🖃 📃 Rig	ht wheels	SFC	Combined safe	ty factor			
	wset 3 right	ZLifting	Wheel lifting				
· · · · ·	wset 4 right	ZLiftingRelative	Relative whee	lifting			
			Apple of attac				
		Contact point index		1	$\angle$		
Y/Q(L/V)_1l	Na	dal criterion, wset 1, l	eft wheel				គ្





- 点击工具栏图标[●],打开接触斑动画窗口,勾选 Contact patches,并 调整大小和位置;
- 14) 点击工具栏图标 , 打开轮轨接触力动画窗口。
- 15) 在模型动画窗口,将鼠标光标移动到车体上,点右键,选择菜单 Camera follows (车体)可使窗口始终跟随车体,如图 3-48。



- 16) 点击仿真控制面板 Integration 按钮开始仿真。
- 17) 在绘图窗口点右键,选择菜单 Show all,可自动调节以适应窗口。



图 3-49





18) 在**轮轨接触力**动画窗口,可设置矢量箭头单位长度表示力的大小,缺省 状态动画窗口里最近处为一位轮对,可根据个人习惯转动视角。



图 3-50

19) 仿真过程如图 3-51, 如果将动画窗口最小化, 计算会非常快。



图 3-51





## 3.1.3 构建刚柔耦合车辆系统

本节介绍将刚性构架替换为柔性构架的方法,操作如下:

- 复制前一节建立的铁道车辆多刚体模型(整个文件夹),重命名为铁道车辆刚柔耦合模型。
- 将 "D:\UM 培训教程\FEM 素材"目录下的 Frame 文件夹整体复制到
   "D:\UM 培训教程\我的 UM 模型\铁道车辆刚柔耦合模型"。

此电脑 > Data (D:) > UM培训教程 > 我的UM模型 > 铁道车辆刚柔耦合模型 >

A 名称	修改日期	类型	大小
Frame	2021/3/3 10:23	文件夹	
GOMeshes	2021/3/4 16:35	文件夹	
History	2021/3/4 16:35	文件夹	
🖻 ascdata.ge	2021/3/4 15:56	UM Document	1 818 KB
បាំ input.dat	2021/3/4 15:56	Universal Mecha	60 KB
🖻 input.xv	2021/3/4 16:01	UM Document. I	1 KB
🛍 last.ecf	2021/3/4 16:34	UM Document	1 KB
🗾 last.fin	2021/3/4 16:34	FIN 文件	1 KB
last.icf	2021/3/4 16:34	ICF 文件	5 KB
🗾 last.par	2021/3/4 16:34	PAR 文件	1 KB
🕘 last.rwc	2021/3/4 16:34	RWC 文件	4 KB
n last.xv	2021/3/4 16:34	UM Document. I	1 KB
🗋 mesh.cfg	2021/3/4 16:34	CFG 文件	1 KB
🛋 object.bmp	2021/3/4 15:56	BMP 文件	226 KB

图 3-52

- 3) 运行 UM Input 程序,加载刚柔耦合车辆模型。
- 4) 在左侧模型树选中子系统转向架 F, 然后在右侧面板点击 Edit subsystem, 进入前转向架子系统。



图 3-53





5) 删除刚体构架和相应的较。



图 3-54

6) 添加一个子系统,选择 Linear FEM Subsystem, 定位到路径 "D:\UM 培 训教程\我的 UM 模型\铁道车辆刚柔耦合模型",选中 Frame, 点 OK, 导入柔性体,命名为构架。 

Read FEM model of object		×
Scan the forder:		
D:\UM培训教程\我的UM模型\铁道车辆刚柔耦合模型		ì
▼···   D:\UM培训教程\我的UM模型\铁道车辆刚柔耦合模型	Data imported from program: ANSYS1 Name of solution: frame 29.09.2017, 16:40:46, bogie Nodes: 50871 Finite elements: 51149 Degrees of freedom: 305226 Normal modes: 94 Static modes: 0 Computation with lumped mass matrix Min. natural frequency: 59.92 Max. natural frequency: 1427.24 Generalized mass matrix: No Generalized stiffness matrix: No	~
D:\UM培训教程\我的UM模型\铁道车辆刚柔耦合模型\Frame OK Cancel	< >	<

图 3-55





7) 在构架子系统 Position 页面,设置高度 0.73m,在 Image 页面可以设置 显示模式。



图 3-56

8) 将所有一系力元的第二个 Body 设置为构架.frame。



图 3-57





9) 将所有二系力元的第一个 Body 设置为构架.frame。



图 3-58

10) 点击 Summary,如果某些力元没有设置作用的物体,会有 Error 提示, 根据提示找到这些力元,并完成设置即可。



图 3-59

11) 点击 Accept,保存对转向架 F 子系统的修改,并退出子系统。



图 3-60

12) 保存模型,关闭 UM Input 程序,然后就可以用 UM Simulation 进行仿 真了。





3.2单轨交通



图 3-61

图 3-61 所示为一个典型的跨座式单轨车辆模型,该模型由一个车体和两个转向架子系统组成。其中转向架子系统里有一个构架、四个走行轮、四个导向轮和两 个稳定轮,轮胎作为一系悬挂,车体和构架之间有二系悬挂,模型共计 38 个自由 度。

本例用到的模块: UM Base、UM Subsystem、UM Monorail Train。





3.2.1 跨座式单轨车辆动力学建模

### 3.2.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\跨 座式单轨车辆模型"。
- 从"D:\UM 培训教程\几何素材\跨座式单轨车辆模型"依次导入建模所 需的几何素材构架.img,走行轮.img,导向轮 img,稳定轮.img,空气弹 簧.img 和减振器.img。



创建第一个刚体,命名为构架,选择几何构架,定义质量 2000,转动惯量(1000,800,1200),质心坐标为(0,0,0.2)。



图 3-63





4) 创建第二个刚体,命名为走行轮 FL,选择几何走行轮,定义质量 40, 转动惯量(1.5, 3.0, 1.5)。



图 3-64

- 5) 将刚体走行轮 FL 复制三次,分别重命名为走行轮 FR、走行轮 RR 和走 行轮 RL。
- 6) 创建第六个刚体,命名为导向轮 FL,选择几何导向轮,定义质量 20, 转动惯量(0.5, 1.0, 0.5)。



图 3-65

- 7) 将刚体导向轮 FL 复制三次,分别命名为导向轮 FR、导向轮 RR 和导向 轮 RL。
- 8) 创建第十个刚体,命名为稳定轮 L,选择几何稳定轮,定义质量 20,转 动惯量(0.5, 1.0, 0.5)。



图 3-67



11) 创建第二个铰, Bodyl 选择构架, Body2 选择走行轮 FL, 类型为
 Rotational, 两个物体铰接点坐标分别为(0.8, 0.17, 0.4) 和(0, 0, 0), 转动轴都为 Y 轴(0, 1, 0)。



图 3-68

12) 在 Joint force 页面选择 Expression 类型的力元,定义 F=M_control (对 于转动铰,这里的 F 表示转矩),用于仿真速度控制。

DF.		Name: 述 Body1: 构架 Type: 《 Geometry Pescriptio Pascal/C e Example: -cstiff*(x F= M_cc	▼ ▼ ▼			
🙆 Initial	ization of	values	×			
Initialization of Identifier Value m_control		Comment				
m_control	0					
Accept	Add t	to the sheet:	Who	le list		 ~
		图 3-6	69			





- 13) 复制生成第三个铰, Body2 更改为走行轮 FR, Body1 的铰接点坐标为 (**0.8**, -**0.17**, **0.4**)_°
- 14) 复制生成第四个铰, Body2 更改为走行轮 RR, Body1 的铰接点坐标为 (**-0.8**, **-0.17**, **0.4**).
- 15) 复制生成第五个铰, Body2 更改为走行轮 RL, Body1 的铰接点坐标为 (-0.8, 0.17, 0.4), 切换到整体模式。





16) 创建第六个铰, Body1 选择构架, Body2 选择导向轮 FL, 类型为 Rotational,两个物体的铰接点坐标分别为(0.85, 0.745, -0.335)和 (0, 0, 0),转动轴分别为Z轴负向(0, 0, -1)和Y轴(0, 1, 0)。 在 Description 页面可预览该自由度,确保导向轮铰坐标增加时对应车辆 前进方向。



图 3-71

17) 复制生成第七个铰, Body2 更改为导向轮 FR, Body1 的连接点为 (0.85, -0.745, -0.335), Body1 的转动轴为 Z 轴正向 (0, 0, 1), 与左 侧相反。







- 18) 复制生成第八个铰, Body2 更改为导向轮 RR, Body1 的连接点为(-0.85, -0.745, -0.335)。
- 19) 复制生成第九个铰, Body2 更改为导向轮 RL, Body1 的连接点为(-0.85, 0.745, -0.335), Body1 的转动轴为 Z 轴负向(0, 0, -1), 与右侧 相反。



图 3-72

- 20) 复制生成第十个铰, Body2 更改为稳定轮 L, Body1 的连接点为(0, 0.745, -1.3), Body1 的转动轴为 Z 轴负向(0, 0, -1)。
- 21) 复制生成第十一个铰, Body2 更改为稳定轮 R, Body1 的连接点为(0, -0.745, -1.3), Body1 的转动轴为 Z 轴正向(0, 0, 1), 与左侧相反。



图 3-73





3.2.1.2 悬挂力元

 选中左侧模型树 Special forces,点击右侧按钮[➡],从下拉菜单中选择 Tyre 轮胎力元,Body1 选择 Base0,Body2 选择走行轮 FL。



图 3-74

- 2) 将轮胎力元走行轮 FL 复制 9 次,依次选择 Body2 为走行轮 FR、走行轮 RR、走行轮 RL、导向轮 FL、导向轮 FR、导向轮 RR、导向轮 RL、稳 定轮 L 和稳定轮 R(并无严格的先后顺序)。
- 3) 选中左侧模型树 Linear forces,点击右侧按钮 →,创建左侧的空气弹簧 力元,Body1 选择构架,Body2 选择 External,选择几何空气弹簧,勾 选 Automatic computation for 2nd body,输入弹簧下点和上点坐标(0,0.95,0.6)和(0,0.95,0.8)。



图 3-75





4) 在 Parameters 页面, 定义弹簧预压力 fz2, 回车, 在弹出窗口点 Accept, 然后到左侧符号列表双击 fz2, 在弹出窗口定义表达式: 9.81*mcarbody/4,这时程序会自动创建新的符号参数 mcarbody,保持 缺省值为0。



- 5) 点击 Stiffness matrix 栏的按钮, 输入刚度矩阵, 如图 3-77, 其中 kxy 2 为纵向和横向刚度(1.25e5), kz 2 为垂向刚度(1.5e5)。

Matrix of lin	ear force elem	ent			×
Elements coordinate-coordi	inate		coordinate-angle		
kxy_2	C	C		-kxy_2*0.2/2 C	C
C	kxy_2 C	C	kxy_2*0.2/2 C	C	C
C	C	kxy_2		C	C
angle-coordinate			angle-angle		
C	kxy_2*0.2/2 🗅	C	10000	C	C
-kxy_2*0.2/2 C	C	C	C	10000 C	C
C	C	C	C	C	1000 C
				ОК	Cancel

- 图 3-77
- 6) 复制生成右侧的空气弹簧力元,修改弹簧下点和上点坐标(0,-0.95, **0.6**)和(0,-0.95,0.8)。

Matrix of linear force element





- 7) 选中左侧模型树 Bipolar forces,点击右侧按钮[➡],创建左侧的减振器, Body1 选择构架, Body2 选择 External, 选择几何减振器, 勾选 Autodetection, Body1 连接点坐标(0.25, 0.1, 0.6), Body2 连接点坐 标 (**0.25**, **0.4**, **0.9**)。
- 8) 从下拉菜单选择力元 Points(numeric), 横坐标设为速度 v, 勾选压缩为 正 Positive: compression,点击 Force 栏按钮 ST开曲线编辑器,定义 非线性的阻尼特性,如图 3-78。



图 3-78

9) 复制生成右侧的减振器,修改 Body1 连接点坐标(-0.25, -0.1, 0.6),修 改 Body2 连接点坐标(-0.25, -0.4, 0.9)。





10) 选中左侧模型树 Special forces, 点击右侧按钮 ┿, 添加一个力元, 选择

类型 Bushing, Body1 选择构架, Body2 选择 External, 勾选 Autodetection, 在 Body1 界面设置连接点(0, 0, 0.5), 在 Description 页 面设置线性牵引刚度 CX=1e7。

Name: 牵引刚度 + •	1	Body1: Body2: 构架    External	•
		Type: 🕒 Bushing	•
Body1: Body2:		Autodetection	
构架 🗾 External	-	Position Description	
Type: 😑 Bushing	$\sim$	Type: Linear	•
Autodetection		CX 1.0e7	<b>A</b>
Position Description		CY	
Body 1 Body 2		CZ	
Visual assignment		CAX	
Translation		CAY	
x:	C	CAZ	
y:	C	DX	
7: 0.5		DY	
		DZ	

11) 复制生成第二个 **Bushing** 力元,在 **Body1** 界面设置连接点(0,0,0.7), 在 **Description** 页面设置线性抗侧滚刚度 **CAX=1e6**。

ame: 抗侧滚刚度 🕇	u <b>t</b> 🔟	Body1:	Body2:	
Comments/Text attribute C		构架	✓ External	
		Type: 🕒 Bushin	ng	
ody1: Body2:		Autodetection		
架 👤 External	-	Position Descri	ption	
/pe: 🖨 Bushing	$\sim$	Type: Linear		
Autodetection		CX		
osition Description		CY		
Body 1 Body 2		CZ		
Visual assignment		CAX 1e6		
Translation		CAY		
x:	C	CAZ		
V*	C	DX		
y.		DY		

图 3-80





 12) 复制生成第三个 Bushing 力元,在 Body1 界面设置连接点(0,0,0.65), 在 Description 页面下拉菜单选择类型 Generalized,然后到 Fy 页面,选择 Point(numeric),横坐标设为位移 x,勾选压缩为正 Positive:

CO	m	n	re	CC	in	n	
ιu		D.	ιv	00	IU		0

lame: 横向止挡  ╋	+ 1								
Comments/Text attribute C		-	Body 1:			Body	2:		
			构架		_	<ul> <li>Exter</li> </ul>	nal		•
Body1: Body2:			Type: 🕻	Bushing	g				~
勾架	-		🗹 Autod	etection					
ype: 🖨 Bushing	~		Position	Descrip	otion				
Autodetection			Type:	Generalize	ed				$\sim$
Position Description			Fx	Fy	Fz	Mx	My	Mz	
Body 1 Body 2			🆾 Po	ints (num	eric)				$\sim$
Visual assignment			Type of abscissa						
Translation			() x	C	)v	⊖t	C	var	
x:	<u> </u>								
y:	<u> </u>		✓ Pos	sitive: con	npressio	on			
z: 0.65	C		Туре	of abscis	sa mat	ching			
Rotation			۰x	value		OF	/alue		
~	C		Length	n/Coord. (	(L): O	)			С
~	C		Deint						С
~	С		Foine 2	(L)/i (L).	L				
Shift after rotation			Per	riodic depe	endenc	e			
x:	C		Initial	pause	0	)			
y:	C		Forces		(	none)		R	
	С		Factor		-				C

图 3-81

13) 点击 Force 栏按钮 并开曲线编辑器,点击按钮 →,读取"D:\UM 培训 教程\曲线素材"路径下的横向止挡.crv 文件,其非线性特性如图 3-82。
圖 欄向止挡.crv - Curve editor - □ ×



图 3-82 至此,我们完成了转向架系统的建模,记得保存一下。





3.2.1.3 整车装配

1) 左侧选中模型树 Object, 在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个转向架模型压缩成了一个子系统,便于整体操 作。



图 3-83

2) 重命名为转向架 F,在 Position 定义 X 平动 5m。



图 3-84

复制生成第二个子系统,重命名为转向架 R, Position 定义 X 平动-5 3) m∘





- 4) 从 "D:\UM 培训教程\几何素材\跨座式单轨车辆模型" 导入几何素材车 体。
- 5) 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择转向架 F 子系统里的 mcarbody 参数,将其设置为 15000kg, 弹出提示,点击 OK,这样将两个转向架子系统里的 mcarbody 参数也都 赋值 15000 kg。





- 图 3-87
- 7) 然后,我们需要将车体和两个转向架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的 Body2 都选择为一个虚拟物体 External,两个连接点的坐标都在 Body1 坐标系中定义的。在左侧模型 树选择 Connection,右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系,这样就用车体替换了子系统里的 External 虚拟体。



图 3-88



图 3-89

8) 最后,在左侧模型树选中 Object, 右侧面板 General 界面 Comments 处 输入备注 Monorail,这样仿真程序才能调用单轨模块的功能,否则是汽 车模块。







## 3.2.2 跨座式单轨车辆动力学仿真

1) 运行 UM Simulation 程序,加载跨座式单轨车辆模型。自由调整动画窗 口大小、位置和视图方向。



图 3-91

2) 打开仿真控制面板,选择 Park 求解器,设置仿真时间 30s,设置数据采 样步长为 0.005s,勾选 Computation of Jacobian。

Obje	ect simu	ulation inspect	tor							
:	Solver	Identifiers	Initial condi	ions Object v	variables	XVA	Informa	ition	Tools	Monorail train
Simu	ulation p	rocess paramete	rs Solver option	s Type of coordin	ates for bodies	PP:	Options			
Sol	lver ) BDF ) ABM ) Park ) Gear 2 ) Park Pa e o size for r tolerar Delay to Computa Block	rallel ranimation and d nce real time simulati tem matrix decor tion of Jacobian diagonal Jacobia	Type of solution Null space me Range space Carlos Content of the solution Type of solution Range space Content of the solution	thod (NSM) method (RSM) 30 5						
		Integration		1	Message				Close	

图 3-92





3) 切换到 Monorail train → Tires, 点击按钮 +, 添加 "D:\UM 培训教程\ 轮胎模型"路径下的三个轮胎模型。

<mark>ම</mark> 打开									×
$\leftarrow \  \  \rightarrow$	~ 个 📙 > 此电脑 >	→ Data (D:) → UM培训	教程 → 轮胎模型	~	ō	Q	搜索"轮胎模型	•	
组织 ▼	新建文件夹							-	?
*	名称	^	修改日期	类型			大小		
~	💹 导向轮.tr		2020/5/7 11:25	TR 文件	ŧ		1 KB		
	//// 稳定轮.tr		2020/5/7 11:25	TR 文件	ŧ		1 KB		
	/////////////////////////////////////		2020/5/7 11:25	TR 文件	ŧ		1 KB		
	文件名(N):	"导向轮.tr" "稳定轮.tr" ";;	E行轮.tr"		~	Tyre	model (*.tr;*.t	rx)	$\sim$
						ł	J开(O)	取消	

图 3-93 4) 在页面下方点右键,选择菜单 Assign to all driving wheels → 走行 轮.tr,这样就给每一个走行轮定义了轮胎模型。

Object simu	lation inspector										
Solver	Identifiers	Initial conditio	ns Ob	oject variab	oles XVA	Inform	nation	Tools	Monorail train		
🖻 🖻	1.										
Tires Opt	ions and parameters	Geometry, in	regularities	Tools 1	Identification	Resistance	Speed	Flexible	track		
Combined	l slip										
Simulate transient process in tyres											
Contact model											
Single point     OMultipoint											
Set of tire models											
+ 2. D 3. D	<ul> <li>↓ 1. D: \UM培训教程 轮胎模型\导向轮.t</li> <li>2. D: \UM培训教程 轮胎模型\决定轮.t</li> <li>3. D: \UM培训教程 轮胎模型\走行轮.t</li> </ul>										
Wheel			Model	Stat. load	Deflection					1	5
跨座式单轨	,车辆模型,转向架F	·走行轮FL	走行轮	0.00kN	0.0mm						
跨座式单轨	车辆模型 转向架F	·走行轮FR	走行轮	0.00kN	0.0mm						
跨座式单轨	,车辆模型,转向架F	.走行轮RR	走行轮	A	in a second s		1-		日白かんの		
跨座式单轨	,车辆模型,转向架F	.走行轮RL	走行轮	Ass	sign to all dr	iving whee	is i	,	守问轮。tr(1)		
跨座式单轨	,车辆模型,转向架F	.导向轮FL	none	Ass	sign to all gu	iiding whe	eis	>	根定轮.tr(R)		
跨座式单轨	车辆模型 转向架F	.导向轮FR	none	Ass	sign to all st	abilizing w	heels	``_	走行轮.tr(Z)		
跨座式单轨	车辆模型 转向架F	.导向轮RR	none	키군	可轮.tr (Whee	I)(T)					
跨座式单轨	车辆模型.转向架F	.导向轮RL	none	稳力	E轮.tr (Whee	l)(R)					
跨座式单轨	车辆模型.转向架F	.稳定轮L	none	走行	亍轮.tr (Whee	l)(W)					
跨座式单轨	,车辆模型.转向架F	.稳定轮R	none	0.00kN	0.0mm						
跨座式单轨	,车辆模型.转向架R	·走行轮FL	走行轮	0.00kN	0.0mm						
跨座式单轨	,车辆模型.转向架R	.走行轮FR	走行轮	0.00kN	0.0mm						
跨座式单轨	,车辆模型.转向架R	.走行轮RR	走行轮	0.00kN	0.0mm						
跨座式单轨	,车辆模型.转向架R	.走行轮RL	走行轮	0.00kN	0.0mm						
_n <del>*</del>	≁+π4#π1.++ ↔tnos	Pétte		0.00141	• •					`	1
	Integration				Message				Close		

图 3-94





- 5) 在页面下方点右键,选择菜单 Assign to all guiding wheels → 导向 轮.tr,这样就给每一个导向轮定义了轮胎模型。
- 6) 在页面下方点右键,选择菜单 Assign to all stabilizing wheels → 稳定
   轮.tr,这样就给每一个稳定轮定义了轮胎模型。
- 切换到 Options and parameters 页面,设置导向面和稳定面的横向距离 之半均为 0.45m。

Solver	Identifiers	Initial conditions	Ob	ject varial	bles	XVA	Inform	nation	Tools	Monorail train
- P	<i>b.</i>									
	1 1 N									
Tires Op	otions and parameters	Geometry, irregul	arities	Tools	Identifi	cation	Resistance	Speed	Flexible track	
<ul> <li>Undefo</li> </ul>	rmed				(	◯ Flexi	ble			
Tire contac	ct model									
Single point     OMultipoint										
Parameter	s of multipoint contact									
		5.0	7							
JISCIEUZAUG	on step (mm)	5.0								
Monorail type O Straddle O Suspended										
Tire force	visualization									
Longitud	dinal force (Fx)									
🗸 Lateral f	force (Fy)									
✓ Normal f	force (Fz)		_							
Vector leng	th in wheel radius	5.0								
Lateral disp	lacement	0.00								
Wired be	eam image									
Parameter	s									
Numeric p	arameters									
Name			Valu	ue						
Guidewa	y base (m)		3.7	,						
Bridge pil	llar base (m)		30							
Shift alor	ng Z of pillar GO (m)		0							
Beam-image step (m)			2							
Kinetic energy for stop (J)			0.0	1						
Guiding wheel contact Y (m)			0.4	5						
Stabilizing wheel contact Y (m)			0.45	5						
Contact :	shift for lower vertical	wheels (m)	0.2	1						
	Integration				Messa	age				Close

图 3-95

### 8) 切换到 Tools 页面,从下拉菜单选择 Beam section profile。

Object simu	ulation inspector										
Solver Identifiers In		Initial conditions	ons Object vari		XVA	Information		Tools	Monorail train		
🖻 🖻	£. ₽										
Tires Opt	tions and parameters	Geometry, irregul	arities Tools	Iden	tification	Resistance	Speed	Flexible trad	c .		
🕞 💾 Beam section profile 🗸											
Name Longitudinal speed history Special track deviations											
Data Input/	Beam section profil Edit	e Points: 5								-1	
Material											
Young's modulus		3.55E10	3.55E10								
Poisson's ratio		0.2									
Density		2500									




9) 然后点击 Data Input/Edit 栏的····按钮,弹出曲线编辑器,点击曲线编辑 器工具栏按钮 🗁,读取"D:\UM 培训教程\曲线素材"路径下的跨座式 单轨梁.crv 文件。

P 建設工業制造 Pota (D) > UM/控制操程 + 曲线索打 v v v 定 全 建工 曲线表打     III v II v II v II v II v II v II	🖲 Read o	data								×
BR 新建文件技	$\leftarrow \rightarrow$	◇ ↑ 📙 > 此电脑 > Data (D:)	> UM培训教程 >	曲线素材	~	Ō	♀ 搜索	"曲线素材"		
Six       修改日期       世型       大小         ● 電話型等軌道是.cv       2020/5/7 11:25       CRV 文件       1 KB         文件名(N):       房屋式草軌道.cv       2020/5/7 11:25       CRV 文件       1 KB         文件名(N):       房屋式草軌道.cv       2020/5/7 11:25       CRV 文件       1 KB         文件名(N):       房屋式草軌道.cv       2020/5/7 11:25       CRV 文件       1 KB         ● 開催式草軌道.cv       2020/5/7 11:25       CRV 文件       1 KB         ● 「日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本       ● 日本       ● 日本       ● 日本         ● 日本       ● 日本       ● 日本       ● 日本       ● 日本       ● 日本	组织 ▼	新建文件夹						•== •		?
● RESIDE Shill BLCrv 2020/5/7 11:25 CRV 文件 1 KB ● REDLES crv 2020/5/7 11:25 CRV 文件 1 KB ● RESIDE Shill BLCrv 2020/5/7 11:25 CRV 文件 1 KB ● RESIDE Shill BLCrv V V TTTT(O) 取用 ● RESIDE Shill BLCrv V V TTTT(O) 取用 ● RESIDE Shill BLCrv V V TTTT(O) 取用 ● RESIDE Shill BLCrv V V TTTT(O) RD H ● RESIDE Shill BLCrv V V TTTTCO V TTTT(O) RD H ● RESIDE Shill BLCrv V V TTTTCO V V TTTTCO V V TTTTCO V V V V V V V V V V V V V V V V V V V	^		修改日期	明	类型		大小			
● WeiLiBacrv 2020/5/7 11:25 CRV 2(# 1 KB ● WeiLiBacrv 2020/5/7 11:25 CRV 2(# 1 KB 文件名(N): ም座式準知品crv V UM curve files ("crv) V 可开(O) 取清 ● PEE:t#和品crv Curve editor × × +++i W Wei V OI		📄 高速磁浮轨道梁.crv	2020/5	/7 11:25	CRV	文件		1 KB		
文件名(N): 預整式準執足.cv       UM curve files (*.crv) ▼         文件名(N): 預整式準執足.cv       UM curve files (*.crv) ▼         打开(O)       取済         ● 野蟹式準執足.crv - Curve editor       ×         ● 丁丁丁(O)       取済         ● 丁丁丁(O)       取済         ● 丁丁丁(O)       取済         ● 丁丁丁(O)       取済         ● 日       ?         ● 「日       ?         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○       ○         ● ○		/////////////////////////////////////	2020/5	/7 11:25	CRV	文件		1 KB		
文件名(N): 濟國式単轨是.crv       UM curve files (*.crv)         可方开(o)       取消         ⑦ 想式単轨是.crv - Curve editor		── ── 跨座式单轨梁.crv	2020/5	/7 11:25	CRV	文件		1 KB		
文件名(N): 辨症式单轨梁.crv       UM curve files (*.crv)         預用の       取満         ● 劈座式单轨梁.crv - Curve editor       ×         ● 劈座式单轨梁.crv - Curve editor       ×         ● 劈座式单轨梁.crv - Curve editor       ×         ● 引き       ● ×         ● 引き       ●										
到田田       東田         ● 御田式館和梁crv - Curve editor       ×         ● 御田       ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		文件名(N): 跨座式单轨梁	1.crv			~	UM curve	files (*.crv)		$\sim$
● pest单纯&cv - Curve editor          ● pest单纯&cv - Curve editor       ×         ● · · · · · · · · · · · · · · · · · · ·							打开(C	))	取消	
PB密武维地盘.cv - Curve editor          ● pBerzűthu&.cv - Curve editor								*		
Image: Construction of the second	<ul> <li>     跨座式   </li> </ul>	单轨梁.crv - Curve editor						-		×
0.8       0.4       0       0.4       0.3         0.4       0       0.4       0.3       0.6       line       Yes         1       0.45       0       line       Yes       3       0.45       0       line       Yes         2       0.45       0       line       Yes       3       0.45       0.1       line       Yes         3       0.45       0.5       line       Yes       3       0.6       line       Yes         6       0.45       -1       line       Yes       3       0.6       line       Yes         6       0.45       -1       line       Yes       10       0.35       0.9       line       Yes         9       0.45       -1       line       Yes       Yes       News       News       Yes       News         10       0.35       0.9       line       Yes       Yes       News       News </td <td></td> <td></td> <td></td> <td>+ +</td> <td>Line</td> <td></td> <td>~ 🗭</td> <td>8 🕻</td> <td>Ÿ.</td> <td></td>				+ +	Line		~ 🗭	8 🕻	Ÿ.	
I 1 0.45 0 Line Yes 2 0.45 0.5 Line Yes 3 0.45 0.5 Line Yes 4 0.35 0.6 Line Yes 6 0.45 -1 Line Yes 6 0.45 -1.5 Line Yes 8 0.45 -1.5 Line Yes 9 0.45 -1.5 Line Yes 9 0.45 -1.5 Line Yes 9 0.45 -1.5 Line Yes 10 0.35 0.9 Line Yes 9 0.45 -1.5 Line Yes 9 0.45 -1.5 Line Yes 9 0.45 -1.5 Line Yes 0 CK Cancel	-0	8 -0.4 0 0.4	4 0.8	N ⊟∵ Cur	x	Y	Туре	Smoothing		^
2       0.45       0       Line       Yes         3       0.45       0.5       Line       Yes         4       0.35       0.6       Line       Yes         6       0.45       -1       Line       Yes         6       0.45       -1       Line       Yes         6       0.45       -1       Line       Yes         7       0.45       -1.5       Line       Yes         9       0.45       -1       Line       Yes         10       0.35       0.9       Line       Yes         0K       Cancel       Concel       Concel         8       3-97       O       OK       Cancel         0       Dipect simulation inspector       OK       Cancel         Solver       Identifiers       Initial conditions       Object variables       XVA       Information         Neutral       Oprofile       Ov=0       Ov=0       OV       OV       OV </td <td></td> <td></td> <td></td> <td> 1</td> <td>-0.45</td> <td>0</td> <td>Line</td> <td>Yes</td> <td></td> <td></td>				1	-0.45	0	Line	Yes		
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		-0.4		2	0.45	0	Line	Yes		
Solver Identifiers Initial conditions Object variables XVA Information Tools Monorall train          Object simulation inspector         Solver Identifiers Initial conditions Object variables XVA Information Tools Monorall train         P Clock horizontal shift of car body				- 4	0.35	-0.5	Line	Yes		
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●				- 5	0.35	-0.9	Line	Yes		
Image: Speed mode of the		-0.8		- 6	0.45	-1	Line	Yes		
● 9 -0.45 -1.5 Line Yes 9 -0.45 -1 Line Yes 10 -0.35 -0.9 Line Yes 11 -0.35 -0.6 Line Yes OK Cancel 図 3-97 O) 切换到 Speed 页面,选择 v=0 模式。 Object simulation inspector Solver Identifiers Initial conditions Object variables XVA Information Tools Monorall train Compared 页面,选择 v=0 模式。 Object simulation and parameters Geometry, irregularities Tools Identification Resistance Speed Flexible track Speed mode Neutral V=0 Automatic termination of equilibrium test Clock horizontal shift of car body			• I I	- 7	0.45	-1.5	Line	Yes		
● 10 -0.35 -1 Line Tes 10 -0.35 -0.9 Line Yes 0K Cancel				- 8	-0.45	-1.5	Line	Yes		
No 0.33 0.9 Line Yes 11 -0.35 -0.6 Line Yes OK Cancel OK Cancel OK Cancel OK Cancel OK Cancel OK Cancel OK Cancel				- 10	-0.45	-1	Line	Yes		- 1
OK       Cancel         图 3-97       0) 切换到 Speed 页面,选择 v=0 模式。         Object simulation inspector       Solver Identifiers Initial conditions Object variables XVA Information Tools Monorall train         Column Columnation of Equilibrium test       OProfile         V=0       Image: V=0         Automatic termination of equilibrium test       OProfile         V=10       Image: V=0				- 11	-0.35	-0.9	Line	Yes		
图 3-97 0) 切换到 Speed 页面,选择 v=0 模式。 Object simulation inspector Solver Identifiers Initial conditions Object variables XVA Information Tools Monorail train C 日 全 Trees Options and parameters Geometry, irregularities Tools Identification Resistance Speed Flexible track Speed mode ○Neutral ○V=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const ○v=const		•	•	[			<u>A</u>	ОК	Cano	el
图 3-97 0) 切换到 Speed 页面,选择 v=0 模式。 Object simulation inspector Solver Identifiers Initial conditions Object variables XVA Information Tools Monorail train C 日 皇 Tires Options and parameters Geometry, irregularities Tools Identification Resistance Speed Flexible track Speed mode V=const © v=0 Automatic termination of equilibrium test Clock horizontal shift of car body										
0) 切拱到 Speed 贝囬, 远择 V=0 侯八。 Object simulation inspector Solver Identifiers Initial conditions Object variables XVA Information Tools Monorail train C 日 虽 Tires Options and parameters Geometry, irregularities Tools Identification Resistance Speed Flexible track Speed mode ○ V=0 ✓ Automatic termination of equilibrium test ✓ Lock horizontal shift of car body	10、日子		图 3-9	97 ⊵						
Object simulation inspector         Solver       Identifiers       Initial conditions       Object variables       XVA       Information       Tools       Monorail train         Image: Speed mode	10) 羽封	哭到 Speed 贝囬,选	」作 <b>V=U</b> 快工	<b>V</b> •						
Solver       Identifiers       Initial conditions       Object variables       XVA       Information       Tools       Monoralitrain         Image: Solver       Identifiers       Initial conditions       Object variables       XVA       Information       Tools       Monoralitrain         Image: Solver       Options and parameters       Geometry, irregularities       Tools       Identification       Resistance       Speed       Flexible track         Speed mode       Options       Options       Options       Options       Identification       Profile       Image: Solver	Object si	mulation inspector			-			4		
Image: Const in the image: Const in the image: Const in the image: Const in the image: Const interval	Solve	r Identifiers Initial conditions	Object variables	XVA	Informatio	n To	ols Mon	iorali train		
Speed mode     OProfile       Overtral     OProfile       Overtral     Overtral       Overtral <td< td=""><td>Tiron (</td><td>Dotions and parameters</td><td>ularities Tools Idea</td><td>tification De</td><td>sistanco Spi</td><td>ed Elarit</td><td>le track</td><td></td><td></td><td></td></td<>	Tiron (	Dotions and parameters	ularities Tools Idea	tification De	sistanco Spi	ed Elarit	le track			
Neutral     O Profile       v=const     Image: width of the st       Automatic termination of equilibrium test       Lock horizontal shift of car body	Speed m	ode	julariues roois ruer	funcauori Re	sistance op	Lea Hexit				
○ v=const <ul> <li>○ v=0</li> </ul> ✓ Automatic termination of equilibrium test           ✓ Lock horizontal shift of car body	ONeut	al		○ Profile						
<ul> <li>✓ Automatic termination of equilibrium test</li> <li>✓ Lock horizontal shift of car body</li> </ul>	⊖v=co	nst		●v=0						
	✓ Autom ✓ Lock h	atic termination of equilibrium test orizontal shift of car body								

图 3-98





11) 点击 Integration,进行静平衡计算,经过约 5s,程序提示"Test succed. Accept results?",点击是(Y)。



图 3-99

12) 在 Monorail Train | Tires 页面,可以看到各个轮胎的预压力与压缩量; 在 Initial conditions 页面,可以看到每个物体在各方向的位移量(相对 与建模位置)。

Wheel	Model	Stat. load	Deflection	跨座了	5.单轨车	辆机	夏型.		
跨座式单轨车辆模型.转向架F.走行轮FL	走行轮	23.99kN	24.0mm		ŵ	1	Coordinate	Velocity	Comment
跨座式单轨车辆模型.转向架F.走行轮FR	走行轮	23.99kN	24.0mm	1.1			0	0	j车体 1c
跨座式单轨车辆模型.转向架F.走行轮RR	走行轮	23.99kN	24.0mm	1.2			0	0	j车体 2c
跨座式单轨车辆模型,转向架F.走行轮RI	走行轮	23.99kN	24.0mm	1.3			-0.0239855837984	0	j车体 3c
哈庞式单数左辆横刑 结合如于 尽合处理	につね	2 50kN	5.0mm	1.4			6.97799968655E-7	0	j车体 4a
	日白松	2.5000	5.0mm	1.5			0	0	j车体 5a
厉座或半机牛衲保望,按回梁F,穿回轮FK	守回船	2.50KN	5.000	1.6			0	0	j车体 6a
跨座式里轨车辆模型,转向架F.导向轮RR	导同轮	2.50kN	5.0mm	1.7			7.04267340014E-8	0	转向架F.jBase0_构杂
跨座式单轨车辆模型.转向架F.导向轮RL	导向轮	2.50kN	5.0mm	1.8			1.548421157E-6	0	转向架F.jBase0_构杂
跨座式单轨车辆模型.转向架F.稳定轮L	稳定轮	2.50kN	5.0mm	1.9			-0.0239854512558	0	转向架F.jBase0_构势
跨座式单轨车辆模型.转向架F.稳定轮R	稳定轮	2.50kN	5.0mm	1.10			6.67461478128E-6	0	转向架F.jBase0_构势
跨座式单轨车辆模型,转向架R,走行轮FL	走行轮	23.99kN	24.0mm	1.11			-1.01182849236E-6	0	转向架F.jBase0_构架
腔应式单轨车辆模型 转向架 走行轮FR	走行轮	23.99kN	24.0mm	1.12			3.60349534065E-9	0	转向架F.jBase0_构杂
	上にお	22.00	24.0mm	1.13			-2.34412842189E-6	0	转向架F.j构架_走行
跨座式半机半两保空,转回采R,走行轮RR	正1丁牝	23.99KN	24.umm	1.14			2.68780189687E-6	0	转向架F.j构架_走行
跨座式甲轨车辆模型.转向架R.走行轮RL	走行轮	23.99kN	24.0mm	1.15			2.68780274647E-6	0	转向架F.j构架_走行
跨座式单轨车辆模型.转向架R.导向轮FL	导向轮	2.50kN	5.0mm	1.16			-2.34412821142E-6	0	转向架FJ构架_走行
跨座式单轨车辆模型.转向架R.导向轮FR	导向轮	2.50kN	5.0mm	1.17			-1.83845613544E-5	0	转向架F.j构架_导向
跨座式单轨车辆模型.转向架R.导向轮RR	导向轮	2.50kN	5.0mm	1.18			2.89337706691E-5	0	转向架F.j构架_导向
跨座式单轨车辆模型.转向架R.导向轮RL	导向轮	2.50kN	5.0mm	1.19			3.03165290858E-5	0	转向架F.j构架_导向
跨座式单轨车辆模型.转向架R.稳定轮L	稳定轮	2.50kN	5.0mm	1.20			-1.64940498364E-5	0	转向架F.j构架_导向
整成于单轨车辆横刑 结合如9 稳宁轮9	指完約	2 50kN	5.0mm	1.21			-1.09865552428E-5	0	转回架F.j构架_稳定
厉庄以于机干惯保全·转回来K-稳定把K	低加制	2.3000	5.0mm	1.22			3.54952634557E-5	0	转向架F.j构架_稳定

图 3-100

#### 13) 切换到 Speed 页面,选择 v=const 模式。

Solve	er Identifiers	Initial conditions	Object	t variables	XVA	Inform	nation	Tools	Monorail train	
≥ E	4									
Tires	Options and parameters	Geometry, irregul	arities To	ols Iden	tification	Resistance	Speed	Flexible track		
Speed r	node									
○ Neu*	tral				OProf	le				
<b>O</b>	onst				()v=0					

图 3-101





14) 切换到 Identification 页面,双击 Longitudinal control torque 右边的单元格,选择转向架子系统里的参数符号 m_control,并在下方 Gain 右边的单元格将参数设置为 3000。

		• and the							Monorail train	
Solver	Identifiers	Initial conditions	Obj	ject variabl	es XVA	Inform	nation	lools	Monorali train	
- 🖻	¥									
es Opt	tions and parameters	Geometry, irregu	larities	Tools Io	dentification	Resistance	Speed	Flexible trac	k	
ongitudina	l speed control									
arameters										
dentifiers										
Vame		Identifier								
opoitudio	al control torque	杜合力吗?	control	1						
				→	v0=20 m_control= mcarbody= fz2=36787. kxy_2=125 向架R morail bridge	0 15000 5 000				
lumeric pa	arameters									
Name		Value								
		1000								
Gain										

图 3-102

15) 切换到 Geometry, irregularities 页面,勾选 Use irregularities,设置轨道 线路 "D:\UM 培训教程\曲线素材\R300.mcg",设置路面不平度如图 3-103,设置 Factor=0.5,勾选 Coherent right irregularities。

Object simulation inspector	r							
Solver Identifiers	Initial conditions	Object variab	oles XVA	Inform	ation	Tools	Monorail train	
4 🖻 🛥								
Tires Options and parameter	rs Geometry, irregula	rities Tools	Identification	Resistance	Speed	Flexible track		
Use irregularities								
Macro-geometry								
□ □:\UM培训教程\曲线素	₹材\R300.mcg							è
Irregularities:								
Driving (left)	D:\UM培训教程\不平	顺样本\单轨\违	行轮_L.irr					<u>i</u>
Driving (right)	D:\UM培训教程\不平	顺样本\单轨\走	行轮_ <mark>R.irr</mark>					è
Guiding (left)	D:\UM培训教程\不平	顺样本\单轨\导	向轮_L.irr					æ
Guiding (right)	D:\UM培训教程\不平	顺样本\单轨\导	向轮_ <mark>R.irr</mark>					Ê
Stabilizing (left)	D:\UM培训教程\不平	顺样本\单轨\稳	定轮_L.irr					â
Stabilizing (right)	D:\UM培训教程\不平	顺样本\单轨\稳	定轮_R.irr					ê
Factor	0.5							
Coherent right irregularities	;							
File with special track deviation	ns							
Use special track deviations								
								è
Integration			Message				Close	





- 16) 切换到 Identifiers→List of identifiers 页面,设置车辆初始速度 v0 为
  - 40,在弹出窗口点击 OK。

bject simulati	on inspecto	r					
Solver	Identifiers	Initial conditions	Object variables	XVA	Information	Tools	Monorail train
List of identifiers	Identifier co	ontrol	ldentifiers of	the same r	name X		
Whole list	* 跨座豆	式单轨车辆模型	<ul> <li>✓ v0 (40)</li> <li>✓ 转向架F.v0 (20)</li> <li>✓ 转向架R.v0 (20)</li> </ul>				-
Name	Expressio	n Value					
v0	40						
mcarbody	1.500000	0E+4					
	Integration		ок с	ancel			Close
			图 3-10	4			

图 3-104

17) 选择主菜单 Tools → Options, 或直接在工具栏上修改车辆初始速度单 位为 km/h。这里的单位只对 v0 参数有效,计算结果均为国际单位

(m, rad , kg, s, N)

					—	$\times$
Options			×	Speed unit		 
Bug reports	Visualization	Wear cont	rol parameters	O km/h	● m/s	
General Auto	osave Format of r	numbers Ex	port to MS Excel			
General						
Automatically	load the last model					
Automatically	remove incompatible	e variables				 
Z-axis directo (while compu	ed downward Iting scalar variables)					
- Temporary direc	tory:					
C:\Users\86187	/AppData\Local\Tem	p\	<u> Z</u>			
Graphical window	WS					
Default pull-c	down tool panel for g	aphical window	vs			
Double colum	n text file					
Prefix for comme	ents:		X			
Measure unit for Speed unit	r speed identifier v0					
💿 km/h	С	) m/s				
Default speed	d unit: m/s					
		OK	Cancel			

图 3-105





18) 打开**变量向导**,创建前转向架四个**走行轮**的法向力变量,并拖入一个绘图窗口。

Coordinates	۲	Solver variables		📑 All f	orces	id Identif	iers	😑 Bus	hing
🗶 Linear variables	a•b [	Expression	3	🕴 Track coordir	ate system	User va	riables	🕀 Rea	ctions
Variables for group of bodies		Monorail train	M	Linear forces	🔍 Joint ford	es 🛷 Bipo	lar forces	🛆 Angular	varia
- ■ 跨座式单轨车辆模型 □- ■ 转向架F	^	Selected (total 跨座式单轨车	<del>4)</del> 辆模型	型.转向架F.走行	亍轮FL, 跨座式	单轨车辆模型		走行轮FR,跨	座式
走行轮□     走行轮□		Name		Comment					
☑ 走行轮RR		Fx		Longitudinal for	ce				
▼ 走行轮船		Fy		Lateral force					
		Fz		Vertical force					
		Mx		Tilting torque					
		My		Rolling resistan	ce torque				
		Mz		Aligning torque					
		Sx		Longitudinal slip	)				
		Sy		Lateral slip					
		Gamma		Camber angle (	degrees)				
		oz dda		Roughness nei	int under whee	9			
一 走行轮FR		Deflection		Tire deflection	vauve				
走行轮RR		Distance		Vehicle distance	from the simu	ation start			
		dyBridge		Bridge deflection	n under tire Y				
		dzBridge		Bridge deflectio	n under tire Z				
		Toe		Toe angle (deg	rees)				
	×				-				
and A. D.A. data and the and table of the									-
(跨座式甲轨车辆模型.转向架	Ver	tical force							P
(跨座式单轨									
(跨座式单轨									
(跨座式単轨…)									
W5/EE.24+-86***									

20) 在模型动画窗口空白处点右键,选择菜单 Cameras → Add camera in current position,再通过右键菜单 Cameras → Camera settings,在 Camera follows the body 可选择镜头跟随车体。



图 3-107 21) 点击仿真控制面板 Integration 按钮开始仿真。





22) 在动画窗口点击**右键**,选择 Show vectors for tyre/road interraction,可 显示**轮胎力**矢量。



图 3-110





# 3.3 磁浮交通



图 3-111

**图 3-111** 所示为一个典型的高速磁浮车辆模型,该模型由一个车体和六个悬 浮架子系统组成。其中悬浮架子系统里有一个构架、两个悬浮电磁铁和两个导向电 磁铁,每个电磁铁上有四个加速度传感器,电磁铁与构架之前有一系悬挂,车体和 构架之间有二系悬挂,模型共计114个自由度。

本例用到的模块: UM Base、UM Subsystem、UM Maglev。





3.3.1 高速磁浮车辆动力学建模

#### 3.3.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\高 速磁浮车辆模型"。
- 从"D:\UM 培训教程\几何素材\高速磁浮车辆模型"依次导入建模所需的几何素材构架.img,悬浮电磁铁.img,导向电磁铁 img,空气弹簧.img。



3) 将导向电磁铁几何重命名为导向电磁铁L,新建一个几何,重命名为导向电磁铁R,选择类型GO,从下拉菜单中选择几何导向电磁铁L,在GO Position页面设置绕Z轴旋转180°。

Name: 导向电磁铁R 🥐 🛨 🕒	Name: 导向电磁铁R
Comments/Text attribute C	Comments/Text attribute
Description GO position	Description GO position
	Translation
GO	x:
Type: 😫 GO 🗸 🕂 🖬 🗓	у:
	z:
Comments/Text attribute C	Rotation
	Z ~ 180
Parameters Colors GE position	~
Element is a graphic object	~
导向电磁铁L 🗸 📭 🖗	Shift after rotation
	x:
	у:
	71

+ 🕂 🛍

С С

C

С С





4) 创建第一个刚体,命名为构架,选择几何构架,定义质量参数 m_frame
 = 1000,转动惯量(1000,1000), 质心坐标为(0,0,0)。



图 3-114

5) 创建第二个刚体,命名为悬浮电磁铁L,选择几何悬浮电磁铁,定义质量m_magnet=600,转动惯量(20,600,600),质心坐标(0,0,-0.25)。





- 6) 复制刚体悬浮电磁铁 L, 重命名为悬浮电磁铁 R。
- 7) 复制刚体悬浮电磁铁 R,重命名为导向电磁铁 L,选择几何导向电磁铁 L,修改质心坐标(0,0.08,0)。
- 8) 复制刚体导向电磁铁 L,重命名为导向电磁铁 R,选择几何导向电磁铁
   R,修改质心坐标(0,-0.08,0)
- 9) 创建第一个铰, Body1 选择 Base0, Body2 选择构架, 类型为 6 d.o.f., 较点坐标都为各自的原点, 无需修改。



图 3-116

10) 创建第二个铰, Body1 选择构架, Body2 选择悬浮电磁铁 L, 类型为6 d.o.f.,两个物体铰接点坐标分别为(0, 1.1, -0.475)和(0, 0, 0),悬 浮电磁铁相对构架具有沿 X、Z 轴平动及绕 Y 轴转动的自由度。



11) 复制生成第三个铰, Body2 更改为悬浮电磁铁 R, Body1 的铰接点坐标 为(0, -1.1, -0.475)。





12) 复制生成第四个铰, Body2 更改为导向电磁铁 L, Body1 的铰接点坐标 为(0, 1.465, -0.18), 导向电磁铁相对构架具有沿X、Y轴平动及绕Z 轴转动的自由度。



图 3-118

13) 复制生成第五个铰, Body2 更改为导向电磁铁 R, Body1 的铰接点坐标 为(0, -1.465, -0.18)。切换到整体视图模式, 如图 3-119。



图 3-119





3.3.1.2 悬挂力元

 选中左侧模型树 Special forces,点击右侧按钮^Ⅰ,添加一个力元,命名 为悬浮电磁铁 LF,选择类型 Bushing, Body1 选择构架,Body2 选择悬 浮电磁铁 L,勾选 Autodetection,在 Position | Body1 界面设置连接点 (1, 1.1, -0.8)。





- 在 Description 页面设置线性刚度 CX = 5e6, CZ = 5e6, CAY = 1e5, DX = 5e4, DZ = 5e4, DAY = 1e3, 定义初始悬浮力 FZ = -fz1, 缺省赋值 0。
- 在左侧下方的参数列表窗口,双击参数符号 fz1,定义表达式:
   9.81*(m_carbody/n_bogies+m_frame+2*m_magnet)/4,程序会自动创建 m_carbody 和 n_bogies 两个符号,分别输入数值 15000 和 6。



图 3-121





- 复制生成第二个 Bushing 力元,命名为悬浮电磁铁 LR,修改 Body1 的 连接点坐标为(-1, 1.1, -0.8)。
- 5) 复制生成第三个 Bushing 力元,命名为悬浮电磁铁 RR,将 Body2 更改为悬浮电磁铁 R,修改 Body1 的连接点坐标为(-1,-1.1,-0.8)。
- 6) 复制生成第四个 Bushing 力元,命名为悬浮电磁铁 RF,修改 Body1 的 连接点坐标为(1,-1.1,-0.8)。
- 7) 复制生成第五个 Bushing 力元,命名为导向电磁铁 LF,将 Body2 更改为导向电磁铁 L,修改 Body1 的连接点坐标为(1, 1.6, -0.18)。



图 3-122

8) 在 Description 页面设置线性刚度 CX = 5e6, CY= 5e6, CAZ = 1e5, DX = 5e4, DY = 5e4, DAZ = 1e3, 定义初始导向力 FY = fy0*1000, 设置 fy0 初值为 5。









- 9) 复制生成第六个 Bushing 力元,命名为导向电磁铁 LR,修改 Body1 的 连接点坐标为(-1, 1.6, -0.18)。
- 10) 复制生成第七个 Bushing 力元,命名为导向电磁铁 RR,将 Body2 更改为导向电磁铁 R,修改 Body1 的连接点坐标为(-1,-1.6,-0.18),修改 横向预压力 FY = -fy0*1000。
- 11) 复制生成第八个 Bushing 力元,命名为导向电磁铁 RF,修改 Body1 的 连接点坐标为(1,-1.6,-0.18)。
- 12) 选中左侧模型树 Linear forces,点击右侧按钮 →,创建第一个空气弹簧 力元,命名为空气弹簧 LF, Body1 选择构架,Body2 选择 External,选

7九, 而名为**空气弹簧**LF, Body1 选择构架, Body2 选择 External, 选择几何**空气弹簧**, 勾选 Automatic computation for 2nd body, 输入弹簧 下点和上点坐标(0.8, 1.2, 0.6)和(0.8, 1.2, 0.9)。



图 3-124

13) 在 Parameters 页面,定义弹簧预压力 fz2,回车,点击 Accept,然后到 左侧参数列表双击 fz2,在弹出窗口定义表达式:
 m carbody*9.81/n bogies/4。



## 图 3-125

www.tongsuan.cn





 $\times$ 

14) 点击 Stiffness matrix 栏的按钮, 输入刚度矩阵, 如图 3-126, 其中 kxy 2 为纵向和横向刚度(1e4), kz 2 为垂向刚度(2e5)。

Matrix •	of linear force	element				×
Elements						
coordinate-	coordinate		c	oordinate-angle		
kxy_2	C	C	C	C	C	C
	C kxy_2	C	C	C	C	C
	C	C kz_2	C	C	C	C
angle-coord	linate		a	angle-angle		
	C	C	C	C	C	С
	C	C	C	C	C	C
	C	C	C	C	C	C
				[	ОК	Cancel

图 3-126

15) 点击 Damping matrix 栏的按钮,输入阻尼矩阵,如图 3-127,其中 cxy 2 为纵向和横向阻尼(2e3), cz 2 为垂向阻尼(3e3)。

Matrix of linear force element

Elements	
coordinate-coordinate	coordinate-angle
cxy_2 C	
Cxy_2 C	
C CZ_2	D         D         D
angle-coordinate	angle-angle
	<u> </u>
	OK Cancel
	图 3-127

图 3-127

- 16) 复制生成第二个空气弹簧力元,命名为空气弹簧 LR,修改弹簧下点和上 点坐标(-0.8, 1.2, 0.6)和(-0.8, 1.2, 0.9)(。
- 17) 复制生成第三个空气弹簧力元,命名为空气弹簧 RR,修改弹簧下点和 上点坐标(-0.8, -1.2, 0.6)和(-0.8, -1.2, 0.9)。
- 18) 复制生成第四个空气弹簧力元,命名为空气弹簧 RF,修改弹簧下点和上 点坐标 0.8, -1.2, 0.6) 和 (0.8, -1.2, 0.9)。



- 图 3-128
- 20) 在 Parameters 页面设置动摩擦系数 0.3,静摩擦系数 0.36,接触刚度 1e8,接触阻尼 1e4,勾选单侧接触 Unilateral contact 和无限平面 Unlimited plane。









21) 在 Geometry 页面, 定义 Body1 的点: (0.8, 1.1, 0.02), (0.8, -1.1, **0.02**), (-0.8, -1.1, 0.02) 和 (-0.8, 1.1, 0.02), 定义 Body2 的平面: 通过点(0,0,0)法向为(0,0,1)。







3.3.1.3 加速度传感器

1) 选中左侧模型树 Subsystems,点击右侧按钮 ⁺,添加一个子系统,重命 名为垂向传感器 LF,从下拉菜单中选择 Included,然后在文件浏览器中 选择"D:\UM 培训教程\子系统\传感器"。

v - 🖸 Object	iect	^		Name: 垂向传感器LF
1	Curves			Type: Included
F(X)	Variables Attributes			Comments/Text attribute C
🗸 🕼 Sut	osystems		I Dour shint	
7	垂向後感器LF		C Upen object X	
> - C	ages 构架		Scan the forder:	
> -	悬浮电磁铁		D:/UM培训教程\子系统	
→ - ♣ → - ⋽ → - ⋽ → - ⋽ → - ⋽ → - ⋑ → - ■ → - = →	日の申益鉄穴 植家 构架 最泛申直鉄丸、 最泛申直鉄丸、 号心申紙鉄丸、 号心申紙鉄丸、 す。 町 加数、 の の の の の の の の の の し 、 の し 、 の の の の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 し 、 の し 、 の し 、 、 の し 、 、 の し 、 、 、 の の し 、 、 、 、 の の し 、 、 、 、 の の し 、 、 、 、 の の 、 、 、 、 、 、 、 、 、 、 、 、 、	× ×		
Name	Expression	Value	D:/UM培训教程\子系统\传感器\	
n frame	1000		OK Cancel Accept as default	
m_magnet	600			
m_carbody	1.500000E+4			
n_bogies	6			
fz1	9.81*(m_carbody/r	1.1526750E+4		
	5			
fy0	m_carbody*9.81/o	6131.25		
fy0 fz2	m_carbody storph			
fy0 fz2 cxy_2	1.000000E+4			
fy0 fz2 kxy_2 kz_2	1.000000E+4 2.000000E+5			
fy0 fz2 kxy_2 kz_2 cxy_2	1.0000000E+4 2.0000000E+5 2000			

图 3-131

2) 将子系统垂向传感器 LF 复制七次,分别重命名为垂向传感器 LR、垂向 传感器 RR、垂向传感器 RF、横向传感器 LF、横向传感器 LR、横向传 感器 RR 和横向传感器 RF,并将四个横向传感器里的 p0 设置为 0。



图 3-132

universal mechanism	它 Tongsuan 同算
创建第六个铰, Body1 选择悬浮电磁等	铁 L,Body2 选择垂向传感器
LF.Sensor, 类型为 6 d.o.f., 两个物体	\$ 较接点坐标分别为(1,0,-0.01)
和(0,0,0),约束其六个自由度。	
Name: J Body1: Body2: Body2: Body2: 基浮电磁铁L ● 6 d.o.f. Geometry Coordinates Body 1 Body 2 Visual assignment Translation x: 1 2 - - - - - - - - - - - -	<ul> <li>Name:</li></ul>

 3,1,2

 1
 0.0000000000

 2
 0.0000000000

 3
 0.0000000000

图 3-133

 复制生成第七个铰,更改 Body2 为垂向传感器 LR.Sensor,修改 Body1 的连接点坐标为(-1,0,-0.01)。

С

- 5) 复制生成第八个铰,更改 Body1 为悬浮电磁铁 R,更改 Body2 为垂向传 感器 RR.Sensor, Body1 的连接点坐标为 (-1, 0, -0.01)。
- 6) 复制生成第九个铰, 更改 Body2 为垂向传感器 RF.Sensor, 修改 Body1 的连接点坐标为(1,0,-0.01)。
- 7) 复制生成第十个铰,更改 Body1 为导向电磁铁 L,更改 Body2 为横向传感器 LF.Sensor,修改 Body1 的连接点坐标为(0.9,0.03,0),设置绕X 轴转动 90°。





Rotation

 $\sim$ 

 $\sim$ 

 $\sim$ 

3)





- 8) 复制生成第十一个铰,更改 Body2 为横向传感器 LR.Sensor,修改 Body1 的连接点坐标为(-0.9, 0.03, 0)。
- 9) 复制生成第十二个铰,更改 Body1 为导向电磁铁 R,更改 Body2 为横向 传感器 RR.Sensor,修改 Body1 的连接点坐标为(-0.9, -0.03, 0),设 置绕 X 轴转动-90°。
- 10) 复制生成第十三个铰,更改 Body2 为横向传感器 RF.Sensor,修改 Body1 的连接点坐标为(0.9, -0.03, 0), 切换到完整视图, 如图 **3-135**°

高速磁浮车辆模型







3.3.1.4 磁浮力元

为悬浮力 LF,选择类型 Maglev force, Body1 选择悬浮电磁铁 L, Body2 选择 Base0,设置作用点(1,0,0),选择悬浮力 Leviation magnet,作用方向为Z轴正向(0,0,1),选择传感器垂向传感器 LF.a sensor, 定义垂向悬浮力 FZ LF, 赋初值 0 即可。



图 3-136

- 2) 复制生成第二个悬浮力,命名为悬浮力LR,作用点(-1,0,0),选择 传感器垂向传感器 LR.a sensor, 定义垂向悬浮力 FZ LR。
- 3) 复制生成第三个悬浮力,命名为悬浮力 RR,更改 Body1 为悬浮电磁铁 R,作用点(-1,0,0),选择传感器垂向传感器 RR.a sensor,定义垂 向悬浮力 FZ RR。
- 4) 复制生成第四个悬浮力,命名为悬浮力 RF,作用点(1,0,0),选择传 感器垂向传感器 RF.a sensor, 定义垂向悬浮力 FZ RF。





5) 复制生成第一个导向力,命名为导向力 LF,更改 Body1 为导向电磁铁 L,作用点(0.9,0,0),作用方向为 Y 轴负向(0,-1,0),选择传感 器横向传感器 LF.a sensor,定义横向导向力 FY LF。



图 3-137

- 6) 复制生成第二个导向力,命名为导向力LR,作用点(-0.9,0,0),选 择传感器横向传感器LR.a_sensor,定义横向导向力FY_LR。
- 7) 复制生成第三个导向力,命名为导向力 RR,更改 Body1 为导向电磁铁
   R,作用点(-0.9,0,0),作用方向为 Y 轴正向(0, 1,0),选择传感
   器横向传感器 RR.a_sensor,定义横向导向力 FY_RR。



图 3-138

8) 复制生成第四个导向力,命名为**导向力 RF**,作用点(**0.9**,**0**,**0**), 选择传感器**横向传感器 RF.a_sensor**,定义垂向悬浮力 **FY_RF**。





3.3.1.5 整车装配

 左侧选中模型树 Object,在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个悬浮架模型压缩成了一个子系统,便于整体操 作。



2) 重命名为悬浮架 1,在 Position 定义 X 平动-2-2.9*0.5m。



- 图 3-140
- 3) 将子系统悬浮架 1 复制五次,分别重命名为悬浮架 2、悬浮架 3、悬浮架 4、悬浮架 5 和悬浮架 6, Position 分别定义 X 平动为-2-2.9*1.5 m、-2-2.9*2.5 m、-2-2.9*3.5 m、-2-2.9*4.5 m 和-2-2.9*5.5 m。

www.universalmechanism.com - 163 - www.tongsuan.cn



 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择悬浮架 1 子系统里的 m_frame、m_magnet、m_carbody 和 n bogies 参数。



6) 创建车体刚体,定义质量 m_carbody,转动惯量(5e4, 3e5, 3e5),质
 心坐标(-10.7, 0, 1.5);点击按钮 №,创建一个六自由度铰。



图 3-142





7) 然后,我们需要将车体和六个悬浮架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的 Body2 都选择为一个虚拟物体 External,两个连接点的坐标都在 Body1 坐标系中定义的。在左侧模型 树选中 Connection,到右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系的原点(实际车体上的任意点均可),这样就用车体替换了子系统里的 External 虚拟体。



图 3-144





8) 为了便于后期仿真控制,我们在这里单独定义一个名义悬浮力 fz0





图 3-145

9) 最后,在左侧模型树选中 Object,右侧 General 界面 Comments 处输入 备注 Monorail (如果模型中无轮胎力元,这一步可略去)。



图 3-146

10) 点击 Summary, 检查是否有逻辑错误, 保存模型, 关闭 UM Input 程序。





### 3.3.2 高速磁浮车辆动力学仿真

1) 运行 UM Simulation 程序,加载高速磁浮车辆模型。自由调整动画窗口 大小、位置和视图方向。



图 3-147

2) 打开仿真控制面板,选择 Park 求解器,设置仿真时间 30s,设置数据采 样步长为 0.005s, 容差为 1e-7, 勾选 Computation of Jacobian。

Object s	mulation inspecto	or					
Solve	r Identifiers	Initial condition	s Object variables	XVA	Information	Tools	Monorail train
Simulatio	n process parameters	Solver options	Type of coordinates for bod	ies PP: C	ptions		
Solver BDF ABM © Park Gea Park Time Step size Error tole Error tole Delay Keep Comp	2 Parallel <u>t</u> for animation and da rance to real time simulatio system matrix decom utation of Jacobian	Type of solution Null space metho Range space me Ra	d (NSM) thod (RSM)				
B	ock-diagonal Jacobiar Integration	1	Message			(	Close

图 3-148





– 🗆 🗙

3) 切换到 Monorail train → Tools 页面,从下拉菜单选择 Beam section profile。然后点击 Data Input/Edit 栏的… 按钮,弹出曲线编辑器,点击 曲线编辑器工具栏按钮 🗁,读取"D:\UM 培训教程\曲线素材"路径下 的高速磁浮轨道梁.crv 文件。

◎ 高速磁浮轨道梁.crv - Curve editor





4) 切换到 Geometry, irregularities 页面,设置轨道线路和不平顺等参数如 图 3-150。

Object sim	ulation insp	ector								
Solver	Identifie	rs Initial conditio	ns C	bject variables	XVA	Inform	nation To	ools	Monorail train	
🖻 🗎	1									
Options and	d parameters	Geometry, irregularitie	es Tools	Identification	Resistance	Speed	Flexible track	MagLev	1	
🗹 Use irreg	gularities									
Macro-geo	metry	11 J Kata I I								~1
Ett D:/U	™培训教程\8	田线索村\R300.mcg								<u></u>
Track roug	hness									~1
Levitation (	(left)	D:\UM培训教程	1不平顺相	本/磁浮/悬浮面	1_L.irr					
Levitation (	(right)	D:\UM培训教程	\不平顺柏	本/磁浮/悬浮面	R.irr					<u>è</u>
Guidance (	eft)	D:\UM培训教程	\不平顺样	本/磁浮/导向面	_L.irr					ì
Guidance (r	right)	D:\UM培训教程	\不平顺样	本/磁浮/导向面	_R.irr					ì
Factor		1.000								
Coherer	nt right irregul	arities								
	Integrati	ion		Message	2			Clos	se	

图 3-150





5) 切换到 Maglev→Levitation 页面,选择悬浮控制模型 Spring/Damper, 并设置名义悬浮间隙 10mm,名义悬浮力 fz0=14.46975 (可双击单元格 从符号列表读取),电磁铁控制质量 300kg,位移反馈系数 1e8N/m,速 度反馈系数 1e4 Ns/m。

Object simu	lation insp	ector									
Solver	Identifie	rs Initial co	nditions	Object	variables	XVA	Inform	nation	Тоо	ls I	Monorail train
<b>₽ 8</b>	₽ <u></u>										
Options and	parameters	Geometry, irreg	ularities	Tools Ide	ntification	Resistance	Speed	Flexible	e track	MagLev	
Levitation	Guiding Op	otions									
Levitation	magnet mode	el									
Spring/	damper		0	Magnet			C	) Identif	iers		
Acceleratio	on model										
Sensor					0	Prediction					
Linear sprir	ng/damper mo	odel Single pole	magnet								
Identifiers	5										
Name			Identifi	er	Value						
Nominal g	ap S0 (mm)				10						
Force for	nominal gap f	F0 (kN)	fz0	× -	高速磁浮	车辆模型					
Mass of m	nagnet (kg)				v0=20						
Spring cor	nstant Kp (N/i	m)			ାମ୍ମି m_fran ଜୁନ m_max	ne=1000					
Damper o	onstant Cp (N	Ns/m)			m carl	pody=15000					
					n_bog	ies=6					
					fz0=1	4.4698					
				>.	- 悬浮劣	₹1 ₽2					
					■ 基注和	≂∠ ₽3					
-				j.	── 悬浮羽	₽ <u>4</u>					
	Integrati	ion		> -	📜 悬浮翔	<b>₽</b> 5					
	integrau			>	📒 悬浮劲	₽6					

图 3-151

6) 切换 Maglev→Guiding 页面,设置如图 3-152。

	initial conditions	Object variables	XVA	Inform	ation	Too	ls	Monorail train
- 🗄   🚀								
ptions and parameters Geometr	ry, irregularities	Tools Identificatio	n Resistance	Speed	Flexible	track	MagLev	
evitation Guiding Options								
Guidance magnet model								
Spring/damper	0	Magnet		С	) Identifie	ers		
Acceleration model								
<ul> <li>Sensor</li> </ul>		(	Prediction					
Linear spring/damper model Sing Identifiers	gle pole magnet							
Linear spring/damper model Sing Identifiers	gle pole magnet							
Linear spring/damper model Sin Identifiers Name	gle pole magnet Identifi	er Val	ue					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm)	gle pole magnet	er Val	ue					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN)	gle pole magnet Identifi 县浮架	er Val 10 11.fy0 0	ue					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN) Mass of magnet (kg)	gle pole magnet Identifi 县浮架	er Val 10 21. fy0 0 300	ue					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN) Mass of magnet (kg) Spring constant Cp (N/m)	gle pole magnet Identifi 县、洋梁	er Val 10 11.fy0 0 300 1E	ue ) 3					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN) Mass of magnet (kg) Spring constant Kp (N/m) Damper constant Cp (Ns/m)	gle pole magnet Identifi 長浮架	er Val 10 21.fy0 0 300 1E 10	ue ) 3 )00					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN) Mass of magnet (kg) Spring constant Kp (N/m) Damper constant Cp (Ns/m)	gle pole magnet Identifi 長浮架	er Val 10 21.fy0 0 30 1E 10	ue ) 3 000					
Linear spring/damper model Sin Identifiers Name Nominal gap S0 (mm) Force for nominal gap F0 (kN) Mass of magnet (kg) Spring constant Kp (N/m) Damper constant Cp (Ns/m)	gle pole magnet Identifi 是·浮架	er Val 10 1.fy0 0 30 1E 10	ue ) 3 )00					







7) 切换到 Speed 页面,选择 v=0 模式。

Object simula	tion inspe	ector									
Solver	Identifier	s Initial conditions	Ob	oject variables	XVA	Information Tools		ls	Monorail train		
Options and pa	arameters	Geometry, irregularities	Tools	Identification	Resistance	Speed	Flexib	le track	MagLev		
Speed mode				0	Profile						
⊖v=const				۲	v=0						
		un bouy									
	Integratio	n		Message	2				Clos	e	
				_							

图 3-153

8) 点击 Integration,进行静平衡计算,经过 1s,提示"Test succed. Accept results?", 点击是(Y)。

Information Test succeed. Accept results? 是(Y) 否(N) Process parameters 这 Simulation time (s) 0.995 Duration time (s) 2.688 Step duration (s) 0.0024691 Step size (s) 0.002 Pause 1) 3%			
是(Y) 否(N) ● Process parameters ● Simulation time (s) 0.995 ● Duration time (s) 2.688 ● Step duration (s) 0.0024691 ● Step size (s) 0.002 Pause 3%	Test succeed. Accept results?	×	
是(Y) 否(N) ● Process parameters 23 ● Simulation time (s) 0.995 ● Duration time (s) 2.688 ● Step duration (s) 0.0024691 ● Step size (s) 0.002 Pause 10 10			
Process parameters       Simulation time (s)       0.995         Simulation time (s)       2.688         Duration time (s)       0.0024691         Step size (s)       0.002         Pause       III         3%	是(Y) 否(N)		
Process parameters       23         Simulation time (s)       0.995         Duration time (s)       2.688         Step duration (s)       0.0024691         Step size (s)       0.002         Pause       11         3%       3%			
✓ Simulation time (s)       0.995         ✓ Duration time (s)       2.688         ✓ Step duration (s)       0.0024691         ✓ Step size (s)       0.002         Pause       III         3%		Process parameters	8
✓ Duration time (s)       2.688         ✓ Step duration (s)       0.0024691         ✓ Step size (s)       0.002         Pause       III         3%       3%		Simulation time (s)	0.995
✓ Step duration (s)       0.0024691         ✓ Step size (s)       0.002         Pause       ■         3%       3%		Duration time (s)	2.688
Pause 3%		Step duration (s)	0.0024691
3%		Pause	
		3%	

图 3-154





- 9) 切换到 Speed 页面,选择 v=const 模式。
- 10) 切换到 Identification 页面,在下方 Gain 右边的单元格将参数设置为 **5000**°

Solver	Identifiers		Initial condition	ns	Object variables	XVA
Inform	mation		Tools		a Mo	norail train
	rs Tools Identif	cation Rev	sistance Sneed	Elevible track	Madlev	
ongitudinal speed cor	ntrol	The second se	botance opeca		hogeet	~
Parameters Numeric parameters						
Name	Value					
Gain	5000					
Integral control facto	or O					
						Class

图 3-155

11) 切换到 Identifiers→List of identifiers 页面,设置车辆初始速度 v0 为 40, 在弹出窗口点击 OK。

Object simulation insp	ector					
Solver Identifie	rs Initial conditions	Object variables	XVA	Information	Tools	Monorail train
List of identifiers Identif Whole list Name Expr v0 40 m_frame 1000 m_magnet 600 m_carbody 1.50 n_bogies 6 fz0 9.81	ier control 訪速磁洋字车辆模型 ession Vi 》 是是 》 《 是 》 《 是 》 《 是 》 》 是 》 》 是 》 》 是 》 》 》 》 》 》 》	dentifiers of the same 40) 第程1.v0 (20) 第程2.v0 (20) 第程3.v0 (20) 第程4.v0 (20) 第程5.v0 (20) 第程6.v0 (20)	e name	×		<b>_</b>
Integrati	on	Message	2		C	llose

图 3-156





12) 选择主菜单 Tools → Options,或在工具栏上修改车辆初始速度单位为

km/h。这里的单位只对 v0 参数有效, 计算结果均为国际单位(m,

-		-		>
rad		kσ.	S .	$\mathbf{N}$
Iuu	,	m <u>s</u> ,	<b>9</b> ,	1 1 / 0

Bug reports       Visualization       Wear control parameters       Speed         General       Autosave       Format of numbers       Export to MS Excel       Image: Margin with the second	unit In ⊚ m/s
General       Autosave       Format of numbers       Export to MS Excel       O km         General       Automatically load the last model       Automatically remove incompatible variables       Image: Compatible variables         Z-axis directed downward (while computing scalar variables)       Image: Compatible variables       Image: Compatible variables         Temporary directory:       Image: Compatible variables       Image: Compatible variables       Image: Compatible variables	/h ● m/s
General Automatically load the last model Automatically remove incompatible variables Z-axis directed downward (while computing scalar variables) Temporary directory: C:\Users\86187\AppData\local\Temp\	
Automatically load the last model     Automatically remove incompatible variables     Z-axis directed downward     (while computing scalar variables) Temporary directory:     C:\Lisers\86187\AppData\Local\Temp\	
Automatically remove incompatible variables Z-axis directed downward (while computing scalar variables) Temporary directory: C:\Lisers\86187\AppData\Local\Temp\	
Z-axis directed downward (while computing scalar variables) Temporary directory: C:\Lisers\86187\AppData\Local\Temp\	
Temporary directory: C:\Users\86187\AppData\Local\Temp\	
C:\Users\86187\AppData\Local\Temp\	
Graphical windows	
Default pull-down tool panel for graphical windows	
Double column text file	
Prefix for comments:	
Measure unit for speed identifier v0 Speed unit	
⊛ km/h ⊖ m/s	
☑ Default speed unit: m/s	

13) 打开**变量向导**,在 Maglev forces 页面,设置长度单位 mm,创建第一个 悬浮架的四个悬浮力的悬浮间隙变量 Gap,并拖入一个绘图窗口。

图 3-157







14) 在 Maglev forces 页面,设置力的单位 N,创建第一个悬浮架的四个悬浮力的悬浮力矢量 Fv,并拖入动画窗口。



15) 在动画窗口空白处点右键,选择 Position of vector list → Left,这样就 在动画窗口左侧显示列表。

10		1 States	_		
		Coordinate system			
1		Grid	•	Į.	-
		Rotation style			
		Modes of images			I
		Cameras	•		
		Camera follows 导向电磁铁L(E)	1		
		Look at			
		Position of vector list	•	Left	
		Clear list of vectors		Right	
		Vector settings		Тор	
		Add characteristic for this body/point	•	Bottom	
		Show vectors for tyre/road interaction		Hide	
		Set graphic object	·T		
		Background color			
		Window parameters			
	_				
		图 3-160			





16) 双击悬浮力矢量 Fv, 修改颜色。

Animation window Vectors / Trajectories	• ि ि ि 🖓 🚳 के 🖓 🔹 🕅 🗖
<ul> <li>✓ Fv (長洋梁1.悬…</li> </ul>	Options of vector X Color
	Vector arrow is in the application point OK Cancel

图 3-161

17) 在动画窗口点右键,选择 Vector seting,设置力矢量单位长度表示的大小为 15000,在 Size 页面可以调节箭头大小。







18) 在模型动画窗口点右键,选择菜单 Cameras → Add camera in current position,再选择右键菜单 Cameras → Camera settings → Camera1, 在 Camera follows the body 可选择镜头跟随车体。

👜 🔍 🖓 🖑 🖘	P 🚰 🔍 🕸 🗊 😈	
Cameras	×	
+ 💽 🛅	Camera name: Camera 1	
Free camera Camera 1	Camera follows the body: 车体	
	<ul> <li>□ 高速磁浮车看模型</li> <li>□ Base0</li> </ul>	
	至体 ● 易浮架1 ● 4529	
	19 <del>家</del> 	
	□ 垂向传感器LF v	
	Position: Look at:	//
	X: 3.38 X: 0.00 X Y: 13.10 X: 0.00 X	
	Z:     14.34     2:     0.00     2:	
	Apply Apply	

图 3-163

19) 点击仿真控制面板 Integration 按钮开始仿真。

20) 在绘图窗口点右键,选择菜单 Show all,可自动调节以适应窗口。







21) 仿真过程如图 3-165, 如果将动画窗口最小化或关闭, 计算会非常快。



图 3-165

注: 读者可以选择软件自带的单极电磁铁控制模型或自定义控制模型 (Matlab/Simulink、UM Block Editor)进行仿真计算。