

UNIVERSAL MECHANISM 9

UM COM Interfaces

2020

User’s manual

Universal Mechanism 9 20-2 Chapter 20. UM COM Interfaces

Contents

20. UM COM INTERFACES ... 20-4

20.1. INTRODUCTION ... 20-4

20.2. IUMOBJECT INTERFACE ... 20-5
20.2.1. Run, pause and stop .. 20-7
20.2.2. Recommended solver initialization ... 20-7
20.2.3. Getting model data .. 20-8

20.3. INTERFACE FOR GENERATION OF EQUATIONS... 20-8

20.4. ICOMIDENTIFIER INTERFACE .. 20-10

20.5. INTERFACES FOR DEVELOPMENT OF TRAIN MODELS .. 20-11
20.5.1. IInpTrain interface .. 20-11

20.5.1.1. Types of train components ... 20-13
20.5.1.2. Model of resistance force in curve ... 20-14

20.5.2. IComCar1D interface .. 20-15
20.5.2.1. Buffer gear parameters ... 20-20
20.5.2.2. Symmetric draft gear parameters ... 20-21

20.5.3. IComLoco1D interface ... 20-21
20.5.4. IComCar3D interface .. 20-22

20.6. INTERFACES FOR SIMULATION OF TRAINS ... 20-23
20.6.1. IUMComTrain interface ... 20-23
20.6.2. IVirtualTrain interface .. 20-31
20.6.3. Coefficient of contact friction for different state of rail .. 20-36
20.6.4. Decrease of adhesion with sliding... 20-37
20.6.5. IUMComTrainVehicle interface ... 20-38

20.6.5.1. Overturning factor ... 20-52
20.6.5.2. Brake fade factor .. 20-53

20.6.6. IUMComLocomotive interface ... 20-55
20.6.7. IUMCom3DTrainVehicle interface .. 20-67
20.6.8. IRailRoad interface ... 20-70
20.6.9. Data file description .. 20-75

20.6.9.1. *.pf file description .. 20-75
20.6.9.2. Cars/*/input.dat file description .. 20-77

20.7. PARAMETERS OF RAILWAY VEHICLES ... 20-78
20.7.1. Diesel model ... 20-78

20.8. IUMEVENTHANDLER INTERFACE ... 20-80

20.9. INTERFACES FOR SIMULATOR OF ROAD VEHICLES ... 20-81
20.9.1. IComCar interface ... 20-81
20.9.2. Indexing of wheels .. 20-89
20.9.3. Angle of wind direction .. 20-90
20.9.4. Terrain curve ... 20-91

20.9.4.1. Definition of terrain curve ... 20-91
20.9.4.2. Computation of unit vectors along SCWheel axes .. 20-91
20.9.4.3. Computation of terrain curve by the triangular mesh .. 20-92
20.9.4.4. Simplified terrain curve ... 20-93

20.9.5. Tire blowout .. 20-94
20.9.6. Road coefficients of friction ... 20-94
20.9.7. Rolling resistance of tires .. 20-95

Universal Mechanism 9 20-3 Chapter 20. UM COM Interfaces

20.9.8. Terrain roughness .. 20-95
20.9.8.1. Format of roughness file *.irr .. 20-95
20.9.8.2. ISO 8608 .. 20-96
20.9.8.3. UM standard roughness ... 20-97
20.9.8.4. Change of roughness .. 20-98

20.9.9. Computation of vehicle equilibrium ... 20-98
20.9.10. Change of inertia parameters. Car occupants .. 20-99
20.9.11. Collisions .. 20-100
20.9.12. Setting and evaluation of tire stiffness characteristics .. 20-100

20.9.12.1. Tire stiffness parameters .. 20-100
20.9.12.2. Rated stiffness parameters. Influence of inflation pressure ... 20-102
20.9.12.3. Direct assignment of rated stiffness parameters... 20-102
20.9.12.4. Approximate evaluation of tire rated stiffness parameters ... 20-102
20.9.12.5. Approximate vertical stiffness and damping.. 20-103
20.9.12.6. Approximate cornering stiffness .. 20-103
20.9.12.7. Approximate longitudinal stiffness .. 20-103
20.9.12.8. Longitudinal and lateral static stiffness ... 20-103

20.9.13. Run over the pebble .. 20-104

20.10. INTERFACE FOR INTERNAL COMBUSTION ENGINE (ICE) .. 20-105
20.10.1. Methods of IComICEngine interface .. 20-105
20.10.2. Development of ICE model with IComICEngine interface .. 20-109

REFERENCES .. 20-110

Universal Mechanism 9 20-4 Chapter 20. UM COM Interfaces

20. UM COM Interfaces

20.1. Introduction

Universal Mechanism software includes a COM server that can be used in third-party appli-

cations. Implemented COM interfaces allows a user to load UM models prepared in advance

with the help of UM Input preprocessor or other preprocessor, change parameters of the model,

set up all simulation environment, simulate dynamics of the model and get kinematical data for

external visualization and control.

Typical way of usage of UM COM interfaces is given in the picture below. All mentioned

there methods are related to IUMObject interface. Implemented interfaces are intended for sup-

porting high-quality dynamics in applications of third-party developers. It is supposed that the

third-party application provides processing of external control and visualization of the current

model configuration.

Please note, COM object must be registered before exploiting. Use utility regsrv32.dll for the

registration. Example of command line:

C:\Windows\System32\regsvr32.exe C:\Program Files\UM Software

Lab\UM\9.0\bin\umcomsolver.dll

Third-party application

LoadObjectFromFile(FileName)

PrepareIntegration

LOOP ti<T

Set external control

ti=ti+Δt

DoIntegrationInterval(ti)

Get current position and

orientation of bodies

Visualization

Control

END LOOP

FinishIntegration

Universal Mechanism 9 20-5 Chapter 20. UM COM Interfaces

20.2. IUMObject interface

IUMObject is a basic interface. Work with UM COM interfaces starts exactly with creating

and using object of IUMObject type. Let us consider methods of IUMObject.

Interface: IUMObject

Hierarchy: IUnknown – IBasicElement – IUMObject

Methods Description

AddWindow HRESULT _stdcall AddWindow([in] long WindowType,

[in] void * Window);

Adds new UM-style animation or graphical window depending on

WindowType: 0 means animation window; 1 means graphical

window.

Window is a pointer to created window, should be considered as

IComAnimationWindow or IUMGraphicWindow corresponding-

ly.

DoIntegrationInterval int _stdcall DoIntegrationInterval([in] double TFinish);

Simulates dynamics of the model till TFinish seconds. After each

time-step new positions and orientations of bodies and all other

performances of mechanical system are available. For real-time

simulation usually called on timer. To obtain smooth animation

(25-80 Hz) time increment should be correspondent (0.04 –

0.0125 s).

Output:

0 –simulation interval is correct;

1 – simulation interval is over;

2 – simulation was not prepared;

otherwise – simulation interval fails, see GetLastError method for

comments.

FinishIntegration int _stdcall FinishIntegration(void);

Frees memory and initializes data after calling DoIntegrationIn-

terval.

GetTrain HRESULT _stdcall GetTrain([out] void * aTrain);

Returns IUMComTrain interface if any or NULL if there is no

train model loaded.

GetCar HRESULT _stdcall GetCar([out] void * aTrain);

Returns IComCar interface if any or NULL if there is no road ve-

hicle model loaded.

GetLastError LPSTR _stdcall GetLastError(void);

Returns comments to the last errors

LoadObjectFromFile

LoadObjectFromFileW

int _stdcall LoadObjectFromFile([in] LPSTR FileName);

int _stdcall LoadObjectFromFile([in] LPWSTR FileName);

Loads UM model from specified input.dat file. Returns 0 in suc-

Universal Mechanism 9 20-6 Chapter 20. UM COM Interfaces

cessful termination, non-zero result in case of non-successful ter-

mination.

PrepareIntegration int _stdcall PrepareIntegration(void);

Allocates memory and initializes data prior to calling

DoIntegrationInterval.

If railroad is used for the description of track geometry a pre-

simulation of the start mode stage is fulfilled in background mode.

Output:

0 –simulation interval is correct;

1 – internal error;

otherwise – simulation preparing fails, see GetLastError method

for comments.

GetRailRoad HRESULT _stdcall GetRailRoad([out] void * aRailRoad);

Returns IRailRoad interface if any or NULL if there is no train

model loaded.

GetLastTime HRESULT _stdcall GetLastTime([out] double * LastTime);

Returns model time [seconds]

GetSystemID LPSTR _stdcall GetSystemID(void);

Returns SystemID of user PC. Used in licensing system.

IsLicensed VARIANT_BOOL _stdcall IsLicensed(void);

Check if UMCom.dll is registered or not. Used in licensing sys-

tem.

SetLicense HRESULT _stdcall SetLicense([in] LPSTR aLicenseData, [in]

LPSTR aLicenseKey, [in] LPSTR aSystemID);

Enter license data for UMCom.dll. Used in licensing system.

GetElementByNameEx

GetElementByNameExW

HRESULT _stdcall GetElementByNameEx([in] long Ele-

mentType, [in] LPSTR ElementName, [out] void* Element);

HRESULT _stdcall GetElementByNameEx([in] long Ele-

mentType, [in] LPWSTR ElementName, [out] void* Element);

Input: ElementType – type of interface (body, joint, identifier etc.)

 eltBody = 1;

 eltJoint = 2;

 eltSubsystem =3;

 eltBFrc = 4;

 eltLFrc = 5;

 eltCFrc = 6;

 eltAFrc = 7;

 eltSFrc = 8;

 eltGO = 11;

 eltIdentifier = 12;

 ElementName : name of element

Universal Mechanism 9 20-7 Chapter 20. UM COM Interfaces

Output: Element is interface to the element.

20.2.1. Run, pause and stop

Here we consider the simplest way to pause and stop simulation with UMCOMSolver.

Three buttons on the form of class TTrainComForm are used: btnRun, btnPause, btnStop.

Below the service procedures are given for start, pause and stop simulation.

var

 SimulationRun : boolean;

 PauseMode : boolean;

 UMObject : IUMObject;

procedure TTrainComForm.btnRunClick(Sender: TObject);

var T : double;

 dT : double;

begin

 T:=0;

 dT:=0.025;

 SimulationRun:=true;

 PauseMode:=false;

 If UMObject.PrepareIntegration = 0 then begin

 GetLastTime(T);

// if railroad is used for track geometry description only

 while SimulationRun do begin

 T:=T+DT;

 If UMObject.DoIntegrationInterval(T) <> 0 then

 break;

 if PauseMode then DoPause;

 end;

 UMObject.FinishIntegration;

 end;

end;

procedure TTrainComForm.btnPauseClick(Sender: TObject);

begin

 PauseMode:=true;

end;

procedure TTrainComForm.btnStopClick(Sender: TObject);

begin

 SimulationRun:=false;

end;

procedure TTrainComForm.DoPause;

begin

 if MessageDlg('Pause. To continue click OK button. To stop click Cancel

button.',

 mtInformation, [mbOK, mbCancel],0) = mrCancel then SimulationRun:=false;

 PauseMode:=false;

end;

20.2.2. Recommended solver initialization

Before start train simulation, it is recommended to set the following parameters of solver:

 UMObject–>SetSolver(5);

 UMObject–>SetJacobianComputation(1);

Universal Mechanism 9 20-8 Chapter 20. UM COM Interfaces

 UMObject–>SetBlockDiagonalJacobians(0);

 UMObject–>SetSolverAccuracy(1.0e-6);

 UMObject–>SetMinimalStep(0.005, 5, 20);

20.2.3. Getting model data

User can use GetElementByNameEx(W) function for getting data about bodies, joints and

identificators included in the model, see description above.

20.3. Interface for generation of equations

This interface allows the user to generate equations of motion of an UM Object in symbolic

form. Equations are generated in Pascal, and should be compiled by an external Delphi compiler.

Symbolic equations requires less floating point operations for evaluations of mass matrix and

inertia forces of MBS with many degrees of freedom, and makes simulation process faster than

in case of numeric-iterative generation. Sometimes this acceleration could be critical for real-

time simulations.

The following files are required for compiling equations:

o dcc32.exe (a stand along Borland Delphi compiler),

o standard Delphi *.dcu files from Lib directory (e.g. windows.dcu, comctrls.dcu end

so on),

o some UM service *.pas files located in the COM directory.

Equations can be generated according to one of the algorithm: the direct or the composite

body algorithms. The second one is more derives more efficient code for object with long kine-

matic chains. The following constants specify the method:

 gmDirectMethod = 0;

 gmCompositeMethod = 2;

If the user set the method index, which differs from the above ones, UM chooses the optimal

method automatically.

Interface: IUMEquations

Hierarchy: IUnknown – IUMEquations

Methods Description

LoadUMObjectFromFile HRESULT _stdcall LoadUMObjectFromFile([in] LPSTR File-

Name);

Reads an UM object for which the equations must be derived.

Input: FileName is the full path to the input.dat file with model.

Output: 0 is the object is loaded, 1 if the loading fails.

CanGenerateEquations HRESULT _stdcall CanGenerateEquations(void);

Verifies whether the description of the loaded UM object is full

and correct.

Output: 0 is the object is correct, 1 if the object is not correct, and

equations cannot be generated.

Universal Mechanism 9 20-9 Chapter 20. UM COM Interfaces

SetDelphiCompilerPath HRESULT _stdcall SetDelphiCompilerPath([in] LPSTR

DCC32Path, [in] LPSTR DCULibPath, [in] LPSTR ComPasPath)

Specifies full paths to files, which are necessary for the compiling

process

Input: DCC32Path is the path to dcc32.exe compiler

 DCULibPath is the path to the standard Delphi *.dcu files

 ComPasPath is the path to the UM service *.pas files located

in the COM directory. COM directory should not be included in

the path.

Output : 0 of all the paths are correct, 1 otherwise

GenerateEquations HRESULT _stdcall GenerateEquations([in] long Method, [in]

VARIANT_BOOL Compile)

Generates equations for a loaded correct UM object.

Input: Method is the index of algorithms

 Compile: 1 if equations should be compiled, 0 otherwise

Output: 0 if equations are generated (and compiled if Compile =

1) successfully and 1 otherwise.

Example

procedure TTrainComForm.btnGenerateEquationsClick(Sender: TObject);

var UMEquations : IUMEquations;

begin

 UMEquations:=CreateComObject(CLASS_UMEquations) as IUMEquations;

 if UMEquations.SetDelphiCompilerPath(PChar(TrainSimPath+'\bin\dcc'),

 PChar(TrainSimPath+'\bin\dcc'),PChar(TrainSimPath+'\bin')) = 0

 then begin

 OpenDialog.InitialDir:= TrainSimPath + '\models\';

 OpenDialog.Filter:= 'Dat files|*.dat';

 if OpenDialog.Execute then

 if UMEquations.LoadUMObjectFromFile(PChar(OpenDialog.FileName)) = 0 then

 begin

 if (UMEquations.CanGenerateEquations=0) then

 UMEquations.GenerateEquations(-1, true);

 end;

 end;

 UMEquations._Release;

end;

Universal Mechanism 9 20-10 Chapter 20. UM COM Interfaces

20.4. IComIdentifier Interface

This interface is used for work with variables in current model.

Interface: IComIdentifier

Hierarchy: IUnknown – IComIdentifier

Methods Description

GetValue double _stdcall GetValue(void);

Output: value of the variable.

SetValue HRESULT _stdcall SetValue([in] double Value);

Input: value of the variable.

SetAssignToAll HRESULT _stdcall SetAssignToAll([in] long Value);

This function sets flag which indicates to assign a new value of

the variable to others same ones in subsystems or not.

Input: 0 – false, 1 – true.

ShouldRefreshElements HRESULT _stdcall ShouldRefreshElements([in] long Value);

This function sets flag which indicates to refresh elements (joints,

forces, etc.) where the identifier is used.

Input: 0 – false, 1 – true.

Example

…

P: Pointer;

Omega: IComIdentifier;

UMObject: IUMObject;

…

// Name of variable is a long name. It is assembled from owner-subsystem name

// and short (simple) name of the variable divided by dot.

UMObject.GetElementByNameEx(eltIdentifier,

 PChar('Subsystem1Name.omega_rotor'), P);

Omega := IUnknown(P) as IComIdentifier;

Omega.SetAssignToAll(1);

Omega.ShouldRefreshElements(1);

…

Omega.SetValue(1);

…

lOmega := Omega.GetValue(1);

…

Universal Mechanism 9 20-11 Chapter 20. UM COM Interfaces

20.5. Interfaces for development of train models

20.5.1. IInpTrain interface

The interface is used for development of train models consisting of any number of 1D and

3D vehicle models.

Interface: IInpTrain

Hierarchy: IUnknown – IBasicElement – IUMObject – IInpTrain

Methods Description

Add3DVehicle HRESULT _stdcall Add3DVehicle([in] LPSTR Path, [in] long

PositionInTrain, [out] void * Car);

Adds a 3D rail vehicle to the train model.

Input: Path – full path to input.dat file of a 3D model; in our

case: to the 3D locomotive model/ Example:

…\rw\train\3Dmodels\ LocoE43000_for_train\input.dat

PositionInTrain: position of the vehicle in train (starts with 1).

Output: Car: interface IComCar3D.

AddCarByIndex HRESULT _stdcall AddCarByIndex([in] long Index, [out] void

* Car);

Adds a 1D car to the train model.

Input: Index: index of a component 0.. ComponentCount-1

Output: Car: interface IComCar1D.

AddCarByName HRESULT _stdcall AddCarByName([in] LPSTR CarName,

[out] void * Car);

Adds a 1D car to the train model.

Input: CarName – name of a car model from Cars directory of

database. Recommended value: ‘car’

Output: Car: interface IComCar1D.

AddLocomotiveByIndex HRESULT _stdcall AddLocomotiveByIndex([in] long Index,

[out] void * Loco);

Adds a 1D locomotive to the train model.

Input: Index = 0.. ComponentCount-1– index of a car model

from Locomotives directory of database

Output: Loco: interface IComLoco1D.

AddLocomotiveByName HRESULT _stdcall AddLocomotiveByName([in] LPSTR Lo-

coName, [out] void * Loco);

Adds a 1D locomotive to the train model.

Input: LocoName – name of a car model from Locomotives di-

rectory of database.

Output: Loco: interface IComLoco1D.

ComponentCount long _stdcall ComponentCount([in] long ComponentType);

Input: ComponentType – type of a train component,

Sect. 20.5.1.1. "Types of train components", p. 20-13.

Universal Mechanism 9 20-12 Chapter 20. UM COM Interfaces

Output: Number of components in database. 0 if TrainDataPath

is incorrect.

ComponentName LPSTR _stdcall ComponentName([in] long ComponentType,

[in] long Index);

Input: ComponentType – type of a train component

Index: index of a component 0.. ComponentCount-1

Output: name of the component in database.

GetComponentIndexByName long _stdcall GetComponentIndexByName([in] long Compo-

nentType, [in] LPSTR ComponentName);

Input: ComponentType – type of a train component

ComponentName: name of a component;

Output: index of a component 0..ComponentCount-1 if succeed,

-1 if fails.

GetTrainDataPath LPSTR _stdcall GetTrainDataPath(void);

Output: current value of path to Train database ..\rw\train

SaveAs HRESULT _stdcall SaveAs([in] LPSTR Path);

Saves the ready model according to the Path. Example:

d:\TrainSimulator\models\Train30

The train model will be saved in Train30 directory. Models of

3D vehicles are copied in this directory as well.

SetCurveResistanceFactor HRESULT _stdcall SetCurveResistanceFactor([in] double Value

);

Value of a parameter A, characterizing resistance forces in

curves, Sect. 20.5.1.2. "Model of resistance force in curve",

p. 20-14.

SetTrainDataPath HRESULT _stdcall SetTrainDataPath([in] LPSTR Path);

Input: path to train database ..\rw\train; is used if the default path

is incorrect.

SetHoldingBrakeParameters HRESULT _stdcall SetHoldingBrakeParameters([in] double

aHoldingBrakeDemand, [in] double aHoldingVelocity, [in]

VARIANT_BOOL aHoldingBrakeEnabled, [in] VARI-

ANT_BOOL aHoldingBrakeControlsBP);

Sets holding brake parameters.

Input:

aHoldingBrakeDemand – minimal brake demand for holding

brake;

aHoldingVelocity – maximal velocity for holding brake, m/s;

aHoldingBrakeEnabled – enables holding brakes;

aHoldingBrakeControlsBP – enables brake pipe changing for

holding brake demand according to the brake system characteris-

tics.

Universal Mechanism 9 20-13 Chapter 20. UM COM Interfaces

20.5.1.1. Types of train components

The following constants specify types of train components in database:

1. tcCar = 0;

1D car model;

Path: {TrainDataPath}\Cars

2. tcLocomotive = 1;

1D locomotive model

Path: {TrainDataPath}\Locomotives

3. tcDraftGear = 2;

Model of draft gear

Path: {TrainDataPath}\Draftgears

4. tcBrakeCoefFriction = 3;

Model of brake coefficient of friction

Path: {TrainDataPath}\Brakes\Coefs

5. tcResistance = 4;

 Model of vehicle resistance by run in tangent sections.

Path: {TrainDataPath}\Resistance

6. tcAcceleratingChamber = 5;

 Model of accelerating chamber

 Path: {TrainDataPath}\ Brakes\Accelerating Chambers

7. tcAuxiliaryReservoir = 6;

 Model of auxiliary reservoir

Path: {TrainDataPath}\ Brakes\Auxiliary Reservoirs

8. tcBrakeCylinder = 7;

 Model of brake cylinder

Path: {TrainDataPath}\ Brakes\Brake Cylinders

9. tcBrakeValve = 8;

 Model of brake valve

Path: {TrainDataPath}\ Brakes\Brake Valves

10. tcCompressor = 9;

 Model of compressor

Path: {TrainDataPath}\ Brakes\Compressors

11. tcControlValve = 10;

 Model of control valve

Path: {TrainDataPath}\ Brakes\Control Valves

12. tcTractionMotor = 11;

 Model of traction motor

Path: {TrainDataPath}\ TractionMotors

13. tcBrakeEquipment= 12;

 Model of brake equipment

Path: {TrainDataPath}\ Brakes\Forces

14. tcAuxBrakeValve= 13;

 Model of locomotive brake valves

Universal Mechanism 9 20-14 Chapter 20. UM COM Interfaces

Path: {TrainDataPath}\ Brakes\Loco brake valves

20.5.1.2. Model of resistance force in curve

The following model of resistance force in curves for 1 ton of vehicle mass is implemented:

𝐹𝑟 =
𝐴

𝑅

where R is the curve radius, and A (Nm) is an empirical parameter.

Examples

Russian standards: A=7000 Nm;

Handbook of Railway Vehicle Dynamics: A=6116 Nm.

Universal Mechanism 9 20-15 Chapter 20. UM COM Interfaces

20.5.2. IComCar1D interface

IComCar1D is used for setting vehicle parameters and subsystems by development of a train

model.

Interface: IComCar1D

Hierarchy: IUnknown – IComCar1D

Methods Description

GetCouplingBase double _stdcall GetCouplingBase(void);

Output: coupling base of a car (m)

GetCGZPosition double _stdcall GetCGZPosition(void);

Ouput: height of the center of mass of the vehicle above rail

head (m). This value is used for calculation of the overturn-

ing factor, see IUMComTrainVehicle.GetOverturningFactor

method, Sect. 20.6.5. "IUMComTrainVehicle interface", p.

20-38.

GetMass double _stdcall GetMass(void);

Output: mass of a car (kg)

GetPivotBase double _stdcall GetPivotBase(void);

Output: pivot base a car (m)

SetAcceleratingChamberByIndex HRESULT _stdcall SetAcceleratingChamberByIndex([in]

int Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Accelerating Chamber

SetAcceleratingChamberByName HRESULT _stdcall SetAcceleratingChamberByName([in]

LPSTR Name);

Input: Name of file with model of Accelerating Chamber

SetAuxiliaryReservoirByIndex HRESULT _stdcall SetAuxiliaryReservoirByIndex([in] int

Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Auxiliary Reservoir

SetAuxiliaryReservoirByName HRESULT _stdcall SetAuxiliaryReservoirByName([in]

LPSTR Name);

Input: Name of file with model of Auxiliary Reservoir

SetBrakeCoefFrictionByName HRESULT _stdcall SetBrakeCoefFrictionByName([in]

LPSTR Name);

Input: Name of file with model of brake coefficient of fric-

tion

SetBrakeCoefFrictionByIndex HRESULT _stdcall SetBrakeCoefFrictionByIndex([in] int

Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

brake coefficient of friction

SetBrakeCylinderByIndex HRESULT _stdcall SetBrakeCylinderByIndex([in] int Index

Universal Mechanism 9 20-16 Chapter 20. UM COM Interfaces

);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Brake Cylinder

SetBrakeCylinderByName HRESULT _stdcall SetBrakeCylinderByName([in] LPSTR

Name);

Input: Name of file with model of Brake Cylinder

SetBrakeLeverageByIndex HRESULT _stdcall SetBrakeLeverageByIndex([in] int In-

dex);

Assigns car brake leverage parameters from database. Brake

leverage is stored in *.bf files in directory {TrainDataPath}\

Brakes\Forces

Input: Index=0..IInpTrain–>ComponentCount-1

SetBrakeLeverageByName HRESULT _stdcall SetBrakeLeverageByName([in] LPSTR

Name);

Assigns car brake leverage parameters from database. Brake

leverage is stored in *.bf files in directory {TrainDataPath}\

Brakes\Forces

Input: Name – name of car brake leverage in database.

SetBrakeValveByIndex HRESULT _stdcall SetBrakeValveByIndex([in] int Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Brake Valve

SetBrakeValveByName HRESULT _stdcall SetBrakeValveByName([in] LPSTR

Name);

Input: Name of file with model of Brake Valve

SetBrakeSystemByIndex HRESULT _stdcall SetBrakeSystemByIndex([in] int Index,

[in] WordBool CheckPaths, [out] SYSINT IResult);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

BrakeSystem

CheckPaths – if True, all internal paths in VP file are

checked,

IResult – bit-by-bit result of internal files checking.

IResult bits:

0 bit – vehicle parameter file,

1 bit – resistance force model file (parameter “resistance”),

2 bit – auxiliary reservoir model file (parameter “auxreser-

voir”),

3 bit – brake cylinder model file (parameter “brakecylin-

der”),

4 bit – brake valve model file (parameter “brakevalve”),

5 bit – auxiliary (loco) brake valve model file (parameter

Universal Mechanism 9 20-17 Chapter 20. UM COM Interfaces

“auxbrakevalve”),

6 bit – control valve model file (parameter “controlvalve”),

7 bit – acceleration chamber model file (parameter “acceler-

atingchamber”),

8 bit – compressor system model file (parameter “compres-

sorsystem”),

9 bit – brake leverage model file (parameter “brakelever-

age”),

10 bit – friction coefficient model file (parameter “coef”),

other bits – always 0.

For every bit: 0 – file exists, 1 – file does not exist.

SetBrakeSystemByName HRESULT _stdcall SetBrakeSystemByName([in] LPSTR

Name, [in] WordBool CheckPaths, [out] SYSINT IResult);

Input: Name of file with model of Brake System

CheckPaths – if True, all internal paths in VP file are

checked,

IResult – bit-by-bit result of internal files checking.

IResult bits:

0 bit – vehicle parameter file,

1 bit – resistance force model file (parameter “resistance”),

2 bit – auxiliary reservoir model file (parameter “auxreser-

voir”),

3 bit – brake cylinder model file (parameter “brakecylin-

der”),

4 bit – brake valve model file (parameter “brakevalve”),

5 bit – auxiliary (loco) brake valve model file (parameter

“auxbrakevalve”),

6 bit – control valve model file (parameter “controlvalve”),

7 bit – acceleration chamber model file (parameter “acceler-

atingchamber”),

8 bit – compressor system model file (parameter “compres-

sorsystem”),

9 bit – brake leverage model file (parameter “brakelever-

age”),

10 bit – friction coefficient model file (parameter “coef”),

other bits – always 0.

For every bit: 0 – file exists, 1 – file does not exist.

SetCGZPosition HRESULT _stdcall SetCGZPosition([in] double Value);

Input: Height of the center of mass of the vehicle above rail

head (m).

This value is used for calculation of the overturning factor,

see IUMComTrainVehicle.GetOverturningFactor method,

Sect. 20.6.5. "IUMComTrainVehicle interface", p. 20-38.

Universal Mechanism 9 20-18 Chapter 20. UM COM Interfaces

SetCompressorByIndex HRESULT _stdcall SetCompressorByIndex([in] int Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Compressor

SetCompressorByName HRESULT _stdcall SetCompressorByName([in] LPSTR

Name);

Input: Name of file with model of compressor

SetControlValveByIndex HRESULT _stdcall SetControlValveByIndex([in] int Index,

[in] WordBool CheckPaths, [out] SYSINT IResult);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

Control Valve

CheckPaths – if True, all internal paths in CV file are

checked,

IResult – bit-by-bit result of internal files checking.

IResult bits:

0 bit – control valve file,

1 bit – delta file (parameter “deltapath”),

2 bit – brake limiting curve file (parameter “brakelimit-

path”),

3 bit – release limiting curve file (parameter “releaselimit-

path”),

4–7 bits – always 0.

For every bit: 0 – file exists, 1 – file does not exist.

SetControlValveByName HRESULT _stdcall SetControlValveByName([in] LPSTR

Name, [in] WordBool CheckPaths, [out] SYSINT IResult);

Input: Name of file with model of Control Valve

CheckPaths – if True, all internal paths in CV file are

checked,

IResult – bit-by-bit result of internal files checking.

IResult bits:

0 bit – control valve file,

1 bit – delta file (parameter “deltapath”),

2 bit – brake limiting curve file (parameter “brakelimit-

path”),

3 bit – release limiting curve file (parameter “releaselimit-

path”),

other bits – always 0.

For every bit: 0 – file exists, 1 – file does not exist.

SetCouplingBase HRESULT _stdcall SetCouplingBase([in] double Value);

Input: coupling base of a car (m)

SetFrictionBufferGear HRESULT _stdcall SetFrictionBufferGear([in] double Trav-

el, [in] double FMin, [in] double FMax, [in] double Preload,

[in] double CasingStiffness, [in] double CasingDamping,

[in] double Damping, [in] long NGears);

Universal Mechanism 9 20-19 Chapter 20. UM COM Interfaces

Assigns a frictional draft gear and its parameters,

Sect. 20.5.2.1. "Buffer gear parameters", p. 20-20.

SetGearByName HRESULT _stdcall SetGearByName([in] LPSTR Name);

Assigns a draft gear from database.

Input: Name – name of a draft dear in database.

SetGearByIndex HRESULT _stdcall SetGearByIndex([in] int Index);

Assigns a draft gear from database.

Input: Index 0.. IInpTrain–>ComponentCount-1 – index of a

draft gear in database

SetMass HRESULT _stdcall SetMass([in] double Value);

Input: mass of a car (kg)

SetPivotBase HRESULT _stdcall SetPivotBase([in] double Value);

Input: pivot base a car (approximately distance between cen-

ters of bogies) (m)

SetResistanceByName HRESULT _stdcall SetResistanceByName([in] LPSTR

Name);

Input: Name of file with model of resistance in tangent sec-

tion

SetResistanceByIndex HRESULT _stdcall SetResistanceByIndex([in] long Index);

Input: Index=0..IInpTrain–>ComponentCount-1 – model of

resistance in tangent section

SetSymmetricDraftGear HRESULT _stdcall SetSymmetricDraftGear([in] double

Travel, [in] double FMin, [in] double FMax, [in] double

Gap, [in] double CasingStiffness, [in] double CasingDamp-

ing, [in] double Damping, [in] long NGears);

Assigns a symmetric draft gear and its parameters,

Sect. 20.5.2.2. "Symmetric draft gear parameters", p. 20-21.

SetTractionMotorByIndex HRESULT _stdcall SetTractionMotorByIndex([in] int In-

dex);

Assigns traction motor characteristics from database.

Input: Index=0..IInpTrain–>ComponentCount-1

SetTractionMotorByName HRESULT _stdcall SetTractionMotorByName([in] LPSTR

Name);

Assigns traction motor characteristics from database.

Input: Name – name of a traction motor characteristics in

database.

Universal Mechanism 9 20-20 Chapter 20. UM COM Interfaces

20.5.2.1. Buffer gear parameters

Buffer draft gear characteristic

Input: Travel (mm) –maximal travel of gear;

FMin (kN) – see figure,

FMax (kN) – see figure

Preload (kN) – preload stretching force in coupling;

CasingStiffness (N/m) – stiffness constant by reaching the maximal compression of gear;

CasingDamping (Ns/m) – damping constant by reaching the maximal compression of gear;

Damping (Ns/m) – damping constant in parallel with the draft gear characteristics.

NGears – number of gears in parallel (1 or 2)

Example (Mark-50 draft gear):

SetFrictionBufferGear(83, 66, 1330, 25, 2.0e9, 4.0e6, 1.0e4, 2).

Travel

Loading

Unloading

F

FMax

FMin

Casing stiff-

ness

Casing stiff-

ness

Preload

Universal Mechanism 9 20-21 Chapter 20. UM COM Interfaces

20.5.2.2. Symmetric draft gear parameters

Symmetric draft gear characteristic

Input: Travel (mm) –maximal travel of gear;

FMin (kN) – see figure,

FMax (kN) – see figure

Gap (mm) – see figure;

CasingStiffness (N/m) – stiffness constant by reaching the maximal compression of gear;

CasingDamping (Ns/m) – damping constant by reaching the maximal compression of gear;

Damping (Ns/m) – damping constant in parallel with the draft gear characteristics.

NGears – number of gears in parallel (1 or 2)

Example:

SetSymmetricDraftGear (83, 66, 1330, 30, 2.0e9, 4.0e6, 1.0e4, 2).

20.5.3. IComLoco1D interface

IComLoco1D is used for setting 1D locomotive parameters and subsystems by development

of a train model.

Interface: IComCar1D

Hierarchy: IUnknown – IComCar1D- IComLoco1D

Travel

FMax

FMin

Casing

stiffness

Gap

Universal Mechanism 9 20-22 Chapter 20. UM COM Interfaces

Interface methods are inherited from IComCar1D, Sect. 20.5.2. "IComCar1D interface", p.

20-15.

20.5.4. IComCar3D interface

IComCar3D is used for setting 3D vehicle parameters and subsystems by development of a

train model.

Interface: IComCar3D

Hierarchy: IUnknown – IComCar1D- IComLoco1D

Most of methods are inherited from IComCar1D, Sect. 20.5.2. "IComCar1D interface", p.

20-15.

Here is the list of additional methods.

Methods Description

GetWheelsetCount long _stdcall GetWheelsetCount(void);

Output: number of wheelsets in the vehicle model

GetWheelsetRadius double _stdcall GetWheelsetRadius(void);

Output: radius of wheels(m)

SetWheelsetRadius HRESULT _stdcall SetWheelsetRadius([in] double Value);

Sets new wheel radius (m)

Universal Mechanism 9 20-23 Chapter 20. UM COM Interfaces

20.6. Interfaces for simulation of trains

20.6.1. IUMComTrain interface

IUMComTrain should be used in case of simulation of train dynamics. Interface allows ac-

cess to 1D and 3D models included into a train model. Let us consider methods of

IUMComTrain.

Interface: IUMComTrain

Hierarchy: IUnknown – IUMComTrain

Methods Description

CoefFrictionMode HRESULT _stdcall CoefFrictionMode([in] VARI-

ANT_BOOL SetNumeric, [in] double Value, [in] dou-

ble ValueWithSand);

Input: If SetNumeric=true (1): Value is used as the cur-

rent coefficient of friction and ValueWithSand as co-

efficient for sanding.

Otherwise, if SetNumeric=false (0) the coefficient of

friction is obtained from the macrogeometry file and

the empirical model of friction with sanding is applied.

Use SetEmpiricalSandingModel(false) for use of Val-

ueWithSand.

Data on friction coefficients see in Sect. 20.6.3.

"Coefficient of contact friction for different state of

rail", p. 20-36.

Distance double _stdcall Distance(void);

Output: distance in meters from train start. It is calcu-

lated as and Σvdt, where v is the current speed of the

locomotive, dt is the current time step size. Such defi-

nition leads to the following feature. If you firstly run

the train in the positive direction, then stop and run it

back to the start point the Distance value in the start

point will be 0 again.

To get the unsigned travelled distance as odometer

value use GetOdometerValue instead, see below.

GetInTrainForce HRESULT _stdcall GetInTrainForce([in] int Vehi-

cleIndex,

[out] double * Value);

Returns current Value of in-train force after the vehicle

specified by VehicleIndex, N. First vehicle has index 0.

The last VehicleIndex that has sense is VehicleCount-

2, because there are no in-train forces after the last ve-

hicle with the index VehicleCount-1.

GetLocomotiveByIndex HRESULT _stdcall GetLocomotiveByIndex([in] int

Universal Mechanism 9 20-24 Chapter 20. UM COM Interfaces

Index,

[out] void * Locomotive);

Returns via Locomotive parameter interface to the lo-

comotive

(IUMComLocomotive) specified by Index. Index starts

from 0 up to LocomotiveCount-1.

GetOdometerValue double _stdcall GetOdometerValue (void);

Output: unsigned true travelled distance in meters from

train start. Both positive and negative running direc-

tions increase the result.

GetVehicle3DByIndex HRESULT _stdcall GetVehicle3DbyIndex([in] int In-

dex,

[out] void * Vehicle);

Returns via Vehicle parameter interface to the vehicle

(IUMComTrainVehicle) specified by Index. Index

starts from 0 up to Vehicle3Dcount-1.

GetVehicleByIndex HRESULT _stdcall GetVehicleByIndex([in] int Index,

[out] void * Vehicle);

Returns via Vehicle parameter interface to the vehicle

(IUMComTrainVehicle) specified by Index. Index

starts from 0 up to VehicleCount-1.

LocomotiveCount int _stdcall LocomotiveCount(void);

Returns count of locomotives in the train.

Vehicle3Dcount int _stdcall Vehicle3Dcount(void);

Returns count of 3D vehicles in the train.

VehicleCount int _stdcall VehicleCount(void);

Returns total count of vehicles in the train, including

locomotives and all 1D and 3D vehicles.

Speed float _stdcall Speed(void);

Returns current speed of the first vehicle of the train, in

fact, train speed, km/h.

StartSpeed HRESULT _stdcall StartSpeed([in] float Value);

Sets initial speed of the train, km/h.

SetEmpiricalSandingModel HRESULT _stdcall SetEmpiricalSandingModel([in]

VARIANT_BOOL Active);

Input: Active = true (1) if the empirical model of adhe-

sion with sanding is used (ValueWithSanding in meth-

od CoefFrictionMode is ignored in this case). Use Ac-

tive = false(0) to apply coefficient of friction with sand

ValueWithSanding in method CoefFrictionMode, see

above.

SetFrictionCoefficientVsSliding HRESULT _stdcall SetFrictionCoefficientVsSlid-

ing([in] double FactorA, [in] double FactorB);

Universal Mechanism 9 20-25 Chapter 20. UM COM Interfaces

Input: parameters A, B characterizing decrease of ad-

hesion with the growth of sliding velocity, Sect. 20.6.4.

"Decrease of adhesion with sliding", p. 20-37.

SetSanding HRESULT _stdcall SetSanding([in] VARI-

ANT_BOOL Active);

Input: Active = true (1) corresponds to down position

of sanding button whereas Active = false (0) corre-

sponds to upper position of the button.

SetTrackType HRESULT _stdcall SetTrackType([in] long TrackTyp-

eIndex);

Input: TrackTypeIndex = 0 corresponds to macroge-

ometry type of track whereas TrackTypeIndex = 1 cor-

responds to railroad track type.

GetTrackType long _stdcall GetTrackType(void);

Returns index of current track type (see SetTrackType

method description).

SetBrakeThread HRESULT _stdcall SetBrakeThread([in] long Value);

Input: Value = 1 pneumatic brake system is simulated

in the tread parallel to the multibody dynamics solver;

Value = 0 – all calculations are realized in a single

thread (default value).

Note. SetBrakeThread method can not be used during

integration. It should be called before PrepareIntegra-

tion method or after FinishIntegration method.

SetGauge HRESULT _stdcall SetGauge([in] double Value);

Sets the used railway track gauge in meters. Default

value is 1.435 m. Track gauge is used for calculation of

overturning factor only.

GetGauge double _stdcall GetGauge(void);

Returns the currently used track gauge. Track gauge is

used for calculation of overturning factor only.

SetBlendBrakeDemand HRESULT _stdcall CalcBlendBrakeDemand([in] dou-

ble aDemand);

Set the brake demand value for blending brake.

Input: aDemand – brake demand (0 – no braking, 1 –

maximal braking). Maximal braking corresponds to

sitation when maximal brake force is applied to every

vehicle of a train. Thus aDemand is ratio of maximal

train brake force. Maximal force is calculated separetly

for every vehicle as brake force with filled brake cylin-

ders.

Blending brake works as follows. When the demand is

low and the ED brake power is enough, only ED brake

Universal Mechanism 9 20-26 Chapter 20. UM COM Interfaces

is activated. When the demand is high and ED brake is

not enough, the ED brake is complemented with the

pneumatic brake (blending), in motor and trailer bogies

independently, according to the brake demand. On low

speed, when ED brake power very small or zero, ED

brake is fully substituted by pneumatic brake.

In UM one-dimensional vehicle models, the total num-

ber of wheelsets and the number of motor wheelsets

are set by identifiers wheelset_count and motor_count

respectively. By default, if a model has no such identi-

fiers, wheelset count is equal to 4 and motor wheelset

count is zero that corresponds to 4-axle car.

Note, that additionally the indices of motor wheelsets

and the number of wheelsets are set in TMC-file (trac-

tion motor parameter files in folder

..\rw\Train\TractionMotors) by using the motoraxle

parameter. For example the line in TMC-file:

motoraxle = (0, 1, 1, 0);

means that a locomotive model has 4 axles and the mo-

tor axles are the second and third ones: 0 – trailer axle

(wheelset), 1 – motor axle.

So by using TMC-file, a user can define the location of

motor wheelsets. If TMC-file is not assigned for a lo-

comotive model, then motor wheelsets are supposed to

be the last ones in the model. The total number of

wheelsets and number of motor wheelsets defined in a

model and in an assigned TMC-file must be equal. So,

if in a TMC-file it is set that

motoraxle = (0, 1, 1, 0);

in a model it must be wheelset_count=4 and mo-

tor_count=2.

In case of necessity to get brake force for every wheel-

set of a vehicle, for example to watch how the brake

blending works for trailer and motor wheelsets, use the

GetBCBrakeForce function, see 20.6.5.

"IUMComTrainVehicle interface", p. 20-38 for details.

For example, if a locomotive has 2 trailer wheelsets

and 2 motor wheelsets and 8 brake cylinders (2 brake

cylinders per wheelset) and TMC-file not assigned (the

motor wheelsets are the lsat ones), to get brake forces

for every wheelset use the following code:

var

 aVehicle : IUMComTrainVehicle;

Universal Mechanism 9 20-27 Chapter 20. UM COM Interfaces

begin

…

// Trailer wheelsets (first ones)

 BrakeForce1WS := Locomotive.GetBCBrakeForce(0)

+ Locomotive.GetBCBrakeForce(1);

 BrakeForce2WS := Locomotive.GetBCBrakeForce(2)

+ Locomotive.GetBCBrakeForce(3);

// Motor wheelsets (last ones)

 BrakeForce3WS := Locomotive.GetBCBrakeForce(4)

+ Locomotive.GetBCBrakeForce(5);

 BrakeForce4WS := Locomotive.GetBCBrakeForce(6)

+ Locomotive.GetBCBrakeForce(7);

…

SetInitialBrakeSystemPressures HRESULT _stdcall SetInitialBrakeSystemPres-

sures(void)

Set pressure values in brake devices, brake pipes and

feed pipes as they were after loading train model.

SetHoldingBrakeRelease HRESULT _stdcall SetHoldingBrakeRelease([in]

VARIANT_BOOL aState);

Sets holding brake release.

GetHoldingBrakeRelease VARIANT_BOOL _stdcall GetHoldingBrakeRe-

lease(void);

Returns if holding brake released or not.

SetElectronicBrakeControl HRESULT _stdcall SetElectronicBrakeControl([in]

VARIANT_BOOL aState);

Sets the state of the electronic brake control. If aState =

true, then the electronic brake control brake control is

used; if aState = false – not used.

The electronic brake control is provided in UM brake

system models by using brake control units (BCU) in-

stalled on vehicles. Files with parameters of BCUs are

store in folder ../Train/Brakes/BCU. BCU supports the

following features: direct electropneumatic brake, indi-

rect electropneumatic brake, electronic control of brake

pipe pressure for direct and indirect brakes, assimila-

tion of brake pipe.

GetElectronicBrakeControl

VARIANT_BOOL _stdcall GetElectronicBrakeCon-

trol(void);

Return the state of the electronic brake control.

GetHoldingBrakeManualMode VARIANT_BOOL _stdcall GetHoldingBrakeMan-

ualMode(void);

Returns if holding brake is in manual mode.

Universal Mechanism 9 20-28 Chapter 20. UM COM Interfaces

SetHoldingBrakeManualMode HRESULT _stdcall SetHoldingBrakeManualMode([in]

VARIANT_BOOL aMode);

Sets holding brake in manual mode.

Input: true – set manual mode for holding brake, false -

– cancel manual mode for holding brake.

The group of methods related to work with railroad track type.

GetCurrentElementID int _stdcall GetCurrentElementID(void);

Returns GlobalID of current element under the first

point of train. Global ID’s of railroad elements are de-

fined from reading of railroad XML file, Sect. 20.6.8.

"IRailRoad interface", p. 20-70.

GetCurrentSectionID int _stdcall GetCurrentSectionID(void);

Returns ID of active section of current element (see

method above). 1- first section; 2 – second one, etc.

GetLocalSectionPosition double _stdcall GetLocalSectionPosition(void);

Returns current local position in meters of the front

point of the train on the active section of current ele-

ment (see methods above). Returning value is limited

by zero and limit length defined for the section in rail-

road XML file, Sect. 20.6.8. "IRailRoad interface", p.

20-70.

GetLocalSectionPositionRatio double _stdcall GetLocalSectionPositionRaio (void);

Returns current local position of the front point of the

train on the active section of current element (see

methods above) as ratio within [0, 1] range, where 0

corresponds to the beginning of the section and 1 cor-

responds to the end of the section. In comparision with

the GetLocalSectionPosition presented above it pro-

vides more smooth train visualization for the external

graphical engine.

GetFrontPointSlope double _stdcall GetFrontPointSlope (void);

Returns slope of railroad track under the first point of

train in ppm.

GetFrontPointCurveRadii double _stdcall GetFrontPointCurveRadii (void);

Returns radii of the railroad track curve under the first

point of train in meters: 1e10 for tangetn track, nega-

tive values for right curve, positive value for left curve.

GetFrontPointRRPosition HRESULT _stdcall GetFrontPointRRPosition([out] int

* ElementID, [out] int * SectionID, [out] double * Lo-

calPosition, [out] int * ElementType);

Returns current position of the front point of the train

Universal Mechanism 9 20-29 Chapter 20. UM COM Interfaces

on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalSectionPosition is local position in meters on the

active section of current element,

ElementType is a flag of positioning of the front point

on the railroad (0 if current element is a road; 1 if it is a

switch; 2 if position is out of element and start mode is

active).

GetLastWheelSetRRPosition HRESULT _stdcall GetLastWheelSetRRPosition([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPosition, [out] int * ElementType);

Returns current position of the last wheelset, if the last

vehicle is 3D one, or the last wheelset point, if the last

vehicle is 1D one, of the train.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPosition is local position in meters on the active

section of current element,

ElementType is a flag of positioning of the wheelset on

the railroad (0 if current element is a road; 1 if it is a

switch; 2 if position is out of element and start mode is

active).

GetFrontPointRRPositionRatio HRESULT _stdcall GetFrontPointRRPosition ([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPositionRatio, [out] int * ElementType);

Returns current position of the front point of the train

on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPositionRatio is local position ratio in [0, 1]

range, where 0 corresponds to the beginning of the sec-

tion and 1 corresponds to the end of the section.

ElementType is a flag of positioning of the wheelset on

the railroad (0 if current element is a road; 1 if it is a

switch; 2 if position is out of element and start mode is

active).

GetLastPointRRPosition HRESULT _stdcall GetLastPointRRPosition([out] int

* ElementID, [out] int * SectionID, [out] double * Lo-

calPosition, [out] int * ElementType);

Universal Mechanism 9 20-30 Chapter 20. UM COM Interfaces

Returns current position of the last point of the train on

the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalSectionPosition is local position in meters on the

active section of current element,

ElementType is a flag of positioning of the last point

on the railroad (0 if current element is a road; 1 if it is a

switch; 2 if position is out of element and start mode is

active).

GetLastPointRRPositionRatio HRESULT _stdcall GetLastPointRRPosition ([out] int

* ElementID, [out] int * SectionID, [out] double * Lo-

calPositionRatio, [out] int * ElementType);

Returns current position of the last point of the train on

the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPositionRatio is local position ratio in [0, 1]

range, where 0 corresponds to the beginning of the sec-

tion and 1 corresponds to the end of the section.

ElementType is a flag of positioning of the last point

on the railroad (0 if current element is a road; 1 if it is a

switch; 2 if position is out of element and start mode is

active).

GetMaxMinAvailablePositions HRESULT _stdcall GetMaxMinAvailablePosi-

tions([out] double* aMaxPosition, [out] double*

aMinPosition, [out] int* aMaxObstacleIndex, [out] int*

aMinObstacleIndex);

Returns current available track length for the positive-

speed (aMaxPosition) and negative-speed (aMinPosi-

tion) motion of the train.

Returns S_Ok if the current train position is admissible

(aMinPosition, aMaxPosition values are positive),

S_False in oposite case.

aMaxObstacleIndex, aMinObstacleIndex parameters

returns the type of limitation: 0 – end of railroad; 1 –

switch with an unsuitable state (motion throw the

switch will result do its damaging); 2 – virtual train

head/tail point.

The group of methods related to work with tank car train.

Universal Mechanism 9 20-31 Chapter 20. UM COM Interfaces

GetLiquidModelCount long _stdcall GetLiquidModelCount(void);

Returns count of available liquid models. The model

list is loaded from ..\rw\Train\Liquid folder when train

model is loading.

GetLiquidModelName LPSTR _stdcall GetLiquidModelName([in] long In-

dex);

Returns name of the liquid model defined with Index in

the model lists or ’Not defined’ if Index is out of

bounds [0, … , GetLiquidModelCount].

20.6.2. IVirtualTrain interface

IVirtualTrain should be used in case of simulation of so-called virtual trains. Let us consider

methods of IVirtualTrain.

Note: Virtual train model enables simplified description of real train, setting of its ini-

tial position on railroad, and control on train motion by input of its kinematic

characteristics (speed, velocity, target speed). Position of virtual train on railroad

is calculated at each step of time domain simulation of the main object dynamics.

Interface: IVirtualTrain

Hierarchy: IUnknown – IVirtualTrain

Methods Description

Methods to control parameters of the train

SetLength HRESULT _stdcall SetLength([in] double Length);

Sets the length of the virtual train (m).

GetLength double _stdcall GetAcceleration(void);

Returns the length of the virtual train (m).

SetCaption HRESULT _stdcall SetCaption([in] LPSTR TrainCaption);

Sets the virtual train caption.

GetCaption LPSTR _stdcall SetCaption(void);

Returns caption of the train.

Methods to start/stop train simulation

StartSimulation HRESULT _stdcall StartSimulation(void);

Starts the virtual train simulation.

Returns S_Ok in success, S_False in oposite case.

StopSimulation HRESULT _stdcall StopSimulation(void);

Stops the virtual train simulation.

Returns S_Ok in success, S_False in oposite case.

Methods to control train motion/kinematics

Universal Mechanism 9 20-32 Chapter 20. UM COM Interfaces

Distance double _stdcall Distance(void);

Output: distance in meters from train start. It is calculated as

and Σvdt, where v is the current speed of the locomotive, dt is

the current time step size. Such definition leads to the following

feature. If you firstly run the train in the positive direction, then

stop and run it back to the start point the Distance value in the

start point will be 0 again.

To get the unsigned travelled distance as odometer value use

GetOdometerValue instead, see below.

GetOdometerValue double _stdcall GetOdometerValue (void);

Output: unsigned true travelled distance in meters from train

start. Both positive and negative running directions increase the

result.

SetSpeed HRESULT _stdcall SetSpeed([in] double Speed)

Determines constant speed (m/s) of the virtual train. It keeps

constant train speed and zero acceleration till it will be changed

by SetAcceleration, SetSpeed or SetTargetSpeed methods.

Initial train speed is zero by default.

GetSpeed double _stdcall GetSpeed(void);

Returns current speed of the train in m/s.

SetAcceleration HRESULT _stdcall SetAcceleration([in] double Acceleration)

Determines constant acceleration (m/s2) of the virtual train. It

keeps constant acceleration till it will be changed by SetAccel-

eration, SetSpeed or SetTargetSpeed methods.

Initial train acceleration is zero by default.

GetAcceleration double _stdcall GetAcceleration(void);

Returns current acceleration of the train in m/s2 set by SetAc-

celeration or SetTargetSpeed methods. If the current speed of

the train is given by SetSpeed then GetAcceleration returns ze-

ro.

SetTargetSpeed HRESULT _stdcall SetTargetSpeed([in] double TargetSpeed,

[in] double TargetDistance)

TargetSpeed is the speed (m/s) that train should have in Tar-

getDistance meters. The method calculates and keeps the re-

quired uniform positive or negative acceleration that should be

applied to provide TargetSpeed in TargetDistance taking into

account current speed. It keeps constant uniform acceleration

till the target distance will be reached; the train has constant

TargetSpeed velocity after TargetDistance is reached. The

speed control can be changed by SetAcceleration, SetSpeed or

SetTargetSpeed methods.

Example:

SetTargetSpeed(0, 5000) provides uniform deceleration to stop

Universal Mechanism 9 20-33 Chapter 20. UM COM Interfaces

the train in 5 km.

The group of methods related to work with railroad track type.

SetFrontRRPosition HRESULT _stdcall SetFrontPointRRPosition([in] int Elemen-

tID, [in] int SectionID, [in] double LocalPosition, [in] VARI-

ANT_BOOL PositiveDirection);

The method describes the (initial) position of the train.

Input:

ElementID is GlobalID of a railroad element,

SectionID is ID of railroad section of railroad element,

LocalPosition is local position in meters on the active section of

current element,

PositiveDirection is the flag of the train direction that influences

on the way how the train will be placed along the railroad.

GetDirection

int _stdcall GetDirection(void);

Returns direction of the virtual train: 0 – forward; 1 – back-

ward.

GetInitialElementID int _stdcall GetInitialElementID(void);

Returns initial railroad element ID for the train.

GetInitialSectionID int _stdcall GetInitialSectionID(void);

Returns initial railroad element section ID for the train.

GetInitialElementPosition int _stdcall GetInitialElementPositionID(void);

Returns initial position on the railroad element section for the

train.

IsInputDataCorrect HRESULT _stdcall IsInputDataCorrect(void);

Returns S_Ok if initial position (InitialElementID, InitialSec-

tionID, InitialElementPosition parameters) are defined correct-

ly; returns S_False in oposite case.

GetRRPosition HRESULT _stdcall GetFrontPointRRPosition([in] double Dis-

tanceFromTrainHead, [out] int * ElementID, [out] int * Sec-

tionID, [out] double * LocalPosition, [out] int * ElementType);

Returns current position of the front point of the train on the

railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPosition is local position in meters on the active section of

current element,

ElementType is a flag of positioning of the front point on the

railroad (0 if current element is a road; 1 if it is a switch; 2 if

position is out of element).

GetRRPositionRatio HRESULT _stdcall GetFrontPointRRPosition([in] double Dis-

tanceFromTrainHead, [out] int * ElementID, [out] int * Sec-

Universal Mechanism 9 20-34 Chapter 20. UM COM Interfaces

tionID, [out] double * LocalPositionRatio, [out] int * Ele-

mentType);

The method is completely identical to the GetFrontPointRRPo-

sition, described above, with the only difference that the Local-

PositionRatio is local position ratio in [0, 1] range, where 0 cor-

responds to the beginning of the section and 1 corresponds to

the end of the section.

GetCurrentElementID int _stdcall GetCurrentElementID ([in] double Distance-

FromTrainHead);

Returns GlobalID of current element of the requested point of

train. Length is given in meters and signifies the distance from

the head end of the train in the direction that is opposite to the

running direction.

Example:

GetCurrentElementID(0) returns GobalID of the head end of

the train.

GetCurrentElementID(IVirtualTrain.Length) returns GobalID

of the tail end of the train.

GetCurrentElementType int _stdcall GetCurrentElementType ([in] double Distance-

FromTrainHead);

Returns flag of current element type of the requested point of

train (0 if current element is a road; 1 if it is a switch.

GetCurrentSectionID int _stdcall GetCurrentSectionID ([in] double Distance-

FromTrainHead);

Returns ID of active section of current element (see method

above) of the requested points of the train. The first section has

index 1. Length is given in meters and signifies the distance

from the head end of the train in the direction that is opposite to

the running direction.

Example:

GetCurrentSectionID(0) returns section index of the head end

of the train.

GetCurrentSectionID(IVirtualTrain.Length) returns section in-

dex of the tail end of the train.

GetLocalSectionPosition double _stdcall GetLocalSectionPosition ([in] double Distance-

FromTrainHead);

Returns current local position in meters of the requested point

of the train on the active section of current element (see meth-

ods above). Returning value is in between by zero and the

length of the defined railroad section.

Length is given in meters and signifies the distance from the

head end of he train in the direction that is opposite to the run-

ning direction.

Universal Mechanism 9 20-35 Chapter 20. UM COM Interfaces

Example:

GetLocalSectionPosition(0) returns local position of the head

end of the train.

GetLocalSectionPosition(IVirtualTrain.Length) returns local

position of the tail end of the train.

GetLocalSectionPositionRatio double _stdcall GetLocalSectionPositionRatio([in] double Dis-

tanceFromTrainHead);

Returns current local position as ratio within [0, 1] interval of

the requested point of the train on the active section of current

element (see methods above).

Length is given in meters and signifies the distance from the

head end of he train in the direction that is opposite to the run-

ning direction.

Example:

GetLocalSectionPositionRatio(0) returns local position of the

head end of the train.

GetLocalSectionPositionRatio(IVirtualTrain.Length) returns

local position of the tail end of the train.

The group of additional methods for the train state control.

IsSimulationStarted HRESULT _stdcall IsInputDataCorrect(void);

Returns S_Ok if input data for the train is correct and simula-

tion of the train motion was started; returns S_False in opposite

case.

GetSpeedControlHistoryLog LPSTR _stdcall SetCaption(void);

Returns text with log of speed history controls for the train.

Universal Mechanism 9 20-36 Chapter 20. UM COM Interfaces

20.6.3. Coefficient of contact friction for different state of rail

Condition of rail surface Traction coefficient

Dry rail (clean) 0.25–0.30

Dry rail (with sand) 0.25–0.33

Wet rail (clean) 0.18–0.20

Wet rail (with sand) 0.22–0.25

Greasy rail 0.15–0.18

Moisture on rail 0.09–0.15

Sleet on rail 0.15

Sleet on rail (with sand) 0.20

Light snow on rail 0.10

Light snow on rail (with sand) 0.15

Wet leaves on rail 0.07

Source: Rolling Contacts (Tribology in Practice Series) by T. A. Stolarski, S. Tobe Pub-

lished in February 15, 2001, Wiley, 298P.

Ratio of average values of coefficient of friction with (fs) /without (f) sanding

Empirical model for coefficient of friction with sanding:

𝑓𝑠 = {

0.15, 𝑓 < 0.1

𝑓(1.75 − 2.5𝑓),
𝑓, 𝑓 > 0.3

 0.1 ≤ 𝑓 ≤ 0.3

f

fs /f

Universal Mechanism 9 20-37 Chapter 20. UM COM Interfaces

Source: K. Nagase, A study of adhesion between the rails and running wheels on main lines:

results of investigations by slipping adhesion test bogie, Proceedings of the IMechE Part F, Jour-

nal of Rail and Rapid Transit 203 (1989), 33-43.

20.6.4. Decrease of adhesion with sliding

The following formula is used for coefficient of friction versus sliding velocity:

𝑓 = 𝑓0((1 − 𝐴)𝑒−𝐵𝑣𝑠 + 𝐴),

where A is the ratio of limit friction coefficient f∞ at infinity slip velocity to maximum friction

coefficient f0,

𝐴 =
𝑓∞
𝑓0

,

B (s/m) is the coefficient of exponential friction decrease, vs (m/s) is the sliding velocity.

 Typical values for locomotives:

 Dry Wet

A 0.40 0.40

B (s/m) 0.60 0.20

Source: O. Polach: Creep forces in simulations of traction vehicles running on adhesion lim-

it. Wear 258 (2005) 992–1000.

Universal Mechanism 9 20-38 Chapter 20. UM COM Interfaces

20.6.5. IUMComTrainVehicle interface

IUMComTrainVehicle is any vehicle of the train, including 1D and 3D vehicles.

Interface: IUMComTrainVehicle

Hierarchy: IUnknown – IUMComTrainVehicle

Methods Description

GetFrontCouplingForce double _stdcall GetFrontCouplingForce(void);

Returns front in-train (coupling) forces, N.

GetBCPressure double _stdcall GetBCPressure([in] int Index);

Output: Pressure of brake cylinder by index, Pa. Index

starts from 0, so the first brake cylinder has index 0.

GetMainPipePressure double _stdcall GetMainPipePressure(void);

Output: Main pipe pressure, Pa

SetMainPipePressure HRESULT _stdcall SetMainPipePressure([in] double

aPressure);

Input: aPressure – main pipe pressure, Pa

SetBCPressure HRESULT _stdcall SetBCPressure ([in] int Index, [in]

double aPressure);

Input: Index – brake cylinder index; aPressure – brake

cylinder pressure, Pa

Sets pressure to brake cylinder by index. Index starts

from 0, so he first brake cylinder has index 0.

SetBCPressureByBP HRESULT _stdcall SetBCPressureByBP ([in] int In-

dex, [in] double aPressure);

Input: Index – brake cylinder index; aPressure – brake

pipe pressure, Pa

Sets brake cylinder pressure according to brake pipe

pressure using current control valve characteristics.

Index starts from 0, so he first brake cylinder has in-

dex 0.

GetPositionInTrain int _stdcall GetPositionInTrain(void);

Output: Position of vehicle in train. Starts with 1

GetRearCouplingForce double _stdcall GetRearCouplingForce(void);

Returns rear in-train (coupling) forces, N.

Is3DVehicle VARIANT_BOOL _stdcall Is3Dvehicle(void);

Output: True (1) if 3D vehicle, False if 1D vehicle

IsLocomotive VARIANT_BOOL _stdcall IsLocomotive(void);

Output: True (1) if current vehicle is locomotive

Speed double _stdcall Speed(void);

Output: Current vehicle speed, m/s

GetLongitudinalAcceleration double _stdcall GetLongitudinalAcceleration (void);

Output: Current vehicle acceleration, m/s2

Universal Mechanism 9 20-39 Chapter 20. UM COM Interfaces

GetCouplingStretch double _stdcall GetCouplingStretch (void);

Output: Relative stretch of rear coupler of the current

vehicle, m

GetCouplingSlack double _stdcall GetCouplingSlack (void);

Output: Slack in rear coupler of the current vehicle, m.

To use this method, vehicle model should have two

identifiers: MinSlack and MaxSlack which set mini-

mal and maximal stretch of coupler in slack.

GetAdhesionLimitRatio double _stdcall GetAdhesionLimitRatio([in] int

WSIndex);

Input: Wheelset index (the first wheelset has index 1).

Output: The ratio of current traction (positive) or brak-

ing (negative) force on a wheelset to maximal adhe-

sion force. Positive output is available for the tractive

vehicles.

Note. This method should be used for 1D vehicles on-

ly.

GetAdhesionLimitRatio = 1 corresponds the case

when the traction force is equal to maximal adhesion

force.

GetAdhesionLimitRatio = -1 corresponds the case

when the braking force is equal to maximal adhesion

force.

Case (GetAdhesionLimitRatio > 1) means that the

current traction force is bigger than the maximal adhe-

sion force and the wheelsets is skidding now. Contin-

uous slipping of the locomotive wheels causes wheel-

burn defects, especially at zero or low speed.

Case (GetAdhesionLimitRatio < -1) means that the

current braking force is bigger than the maximal adhe-

sion force and the wheelset is about to be blocked.

Depending on exposure time the flat wheel defect

might appear.

Sanding (Sect. 20.6.3. "Coefficient of contact friction

for different state of rail", p. 20-36) increases the ad-

hesion limit and thereby decreases the current sliding

ratio.

GetSlidingVelocity double _stdcall GetSlidingVelocity([in] int WSIndex);

Input: Wheelset index (the first wheelset has index 1).

Output: Linear sliding velocity in the contact of

wheelset and rail. If sliding velocity <> 0 then the

wheelset is skidding.

Universal Mechanism 9 20-40 Chapter 20. UM COM Interfaces

SetParkBrakeState HRESULT _stdcall SetParkBrakeState([in] VARI-

ANT_BOOL ParkBrakeState);

Input: ParkBrakeState – state of park brake: True –

park brake is activated, False – park brake is deac-

tivated.

The park brake model works in the following way.

When the brake is activated, brake force is increasing

from 0 to the value which is set by parameter Park-

BrakeForce in VP file (in folder ..\rw\Train\Vehicles)

during time interval set by parameter ParkBrakeTime

in the same file. When the brake is deactivated the

force is decresing from the ParkBrakeForce value to 0

during the same time.

Park brake parameters (VP file):

ParkBrakeForce is the maximal park brake force, N

ParkBrakeTime is time inreval when the brake force is

increasing from 0 to the maximal value or decreasing

from the maximal one to 0, s.

SetLeakage HRESULT _stdcall SetLeakage ([in] double aLeakage

);

Input: aLeakage – leakage rate in a vehicle, Pa/min

Sets leakage rate [Pa/min] for a vehicle

GetLeakage double _stdcall GetLeakage(void);

Output: leakage rate [Pa/min] for a vehicle

SetCVEnabled HRESULT _stdcall SetCVEnabled ([in] VARI-

ANT_BOOL aEnabled);

Input: if aEnabled is True – control valve is enabled, if

aEnabled is False – control valve is disabled

GetCVEnabled VARIANT_BOOL _stdcall GetCVEnabled(void);

Output: True – if control valve is enabled, False – if

control valve is disabled

SetBCEnabled HRESULT _stdcall SetBCEnabled ([in] int Index, [in]

VARIANT_BOOL aEnabled);

Input: if aEnabled is True – brake cylinder is enabled,

if aEnabled is False – brake cylinder is disabled. Index

starts from 0, so the first brake cylinder has index 0.

GetBCEnabled VARIANT_BOOL _stdcall GetBCEnabled(void);

Output: True – if brake cylinder is enabled, False – if

brake cylinder is disabled. Index starts from 0, so the

first brake cylinder has index 0.

GetBCCount int _stdcall GetBCCount (void);

Output: Number of brake cylinders on vehicle

SetARLeakage HRESULT _stdcall SetARLeakage ([in] double aLe-

Universal Mechanism 9 20-41 Chapter 20. UM COM Interfaces

akage);

Input: aLeakage – leakage rate in auxiliary reservoirs

of vehicle, Pa/min

Sets leakage rate [Pa/min] for auxiliary reservoirs

GetARLeakage double _stdcall GetARLeakage(void);

Output: leakage rate [Pa/min] for a auxiliary reservoirs

SetARPressure HRESULT _stdcall SetARPressure([in] double aPres-

sure);

Input: aPressure – auxiliary reservoir pressure, Pa

GetARPressure double _stdcall GetARPressure(void);

Output: Auxiliary reservoir pressure, Pa

SetPressureFactor HRESULT _stdcall SetPressureFactor ([in] double

aFactor);

Input: aFactor – pressure factor for pressure in brake

cylinder

GetPressureFactor double _stdcall GetPressureFactore(void);

Output: Pressure factor for pressure in brake cylinder

GetDBVPressure double _stdcall GetDBVPressure(void);

Output: Driver’s brake valve pressure, Pa

D5On HRESULT _stdcall D5On (void);

Turn on D5 valve.

D5Off HRESULT _stdcall D5Off(void);

Turn off D5.

D6On HRESULT _stdcall D6On (void);

Turn on D6 valve.

D6Off HRESULT _stdcall D6Off(void);

Turn off D6 valve.

IsLiquid VARIANT_BOOL _stdcall IsLiquid(void);

Output: True (1) if current vehicle is tank car

SetLiquidModel HRESULT _stdcall SetLiquidModel([in] long Index,

[in] double h_R, [in] double Density);

Set car liquid model parameters. HRESULT is S_Ok

if model is set, S_False if not.

Input:

Index – index of liquid model (0 by default);

h_R – fluid level relative to tank radii (1 – half volume

filling);

Density – density of the liquid, kg/m3.

Example:

Vehicle := IUNKnown(P) as IUMComTrainVehicle;

if Vehicle.IsLiquid then

 Vehicle.SetLiquidModel(Index, h_R, Density));

Universal Mechanism 9 20-42 Chapter 20. UM COM Interfaces

GetLiquidModel HRESULT _stdcall SetLiquidModel([out] long* In-

dex, [out] double* h_R, [out] double* Density);

Returns car liquid model parameters. HRESULT is

S_Ok if model is set, S_False if not.

Output: Index is index of liquid model (0 by default);

h_R is fluid level relative to tank radii (1 – half vol-

ume filling);

Density is density of the liquid, kg/m3.

SetLeverageRatio HRESULT _stdcall SetLeverageRatio([in] double

aRatio);

Input: aRatio is leverage ratio of vehicle brake system.

GetLeverageRatio double _stdcall GetLeverageRatio(void);

Output: leverage ratio of vehicle brake system.

LoadCVFromFile HRESULT _stdcall LoadCVFromFile ([in] LPSTR

aFileName);

Input: aFileName is file name of control valve param-

eter file. For example, ‘Ke1a-G.cv’.

SetBrakeFactor HRESULT _stdcall SetBrakeFactor ([in] double aFac-

tor);

Input: aFactor is Brake factor for total brake force of a

vehicle.

GetBrakeFactor double _stdcall GetBrakeFactore(void);

Output: Brake factor for total brake force of a vehicle.

SetAmbientTemperature HRESULT _stdcall SetAmbientTemperature ([in]

double aTemperature);

Input: aTemperature is ambient temperature in Celsius

degree (ºC) for brake fade model. Temperature is

GetAmbientTemperature double _stdcall GetAmbientTemperature (void);

Output: current ambient temperature in Celsius degree

(ºC) for brake fade model.

SetCurrentBrakeTemperature HRESULT _stdcall SetCurrentBrakeTemperature ([in]

double aTemperature);

Input: aTemperature is temperature in Celsius degree

(ºC) of brake shoes for brake fade model.

GetCurrentBrakeTemperature double _stdcall GetCurrentBrakeTemperature (void);

Output: current temperature in Celsius degree (ºC) of

brake shoes for brake fade model.

GetBrakeFadeCoef double _stdcall GetBrakeFadeCoef (void);

Output: current brake fade coefficient.

GetOverturningFactor double _stdcall GetOverturningFactor(void);

Output: Returns overturning factor on curved track in

[0..1] range. Overturning factor is calculated as a ratio

between the current vehicle speed and the maximal

Universal Mechanism 9 20-43 Chapter 20. UM COM Interfaces

(critical) vehicle speed in a curve when inner wheels

lift off rail. Overturning factor is calculated for quasi-

static motion. Influence of railway track irregularities

is ignored. Overturning factor is zero in tangent tracks

and bigger then zero in curves.

Function requires that every vehicle has verti-

cal_mass_center_position parameter that is used for

calculation of the overturning factor. If the vehicle has

no such a parameter the function returns -1 as a result.

SetOrificeToAtmosphere HRESULT _stdcall SetOrificeToAtmosphere([in]

double aDiameter);

Input aDiameter – diameter of orifice from brake pipe

to atmosphere, [m].

Sets the diameter of an orifice from brake pipe to at-

mosphere. Can be applied for simulation of leakages,

disjoints in brake pipe and so on.

GetOrificeToAtmosphere double _stdcall GetOrificeToAtmosphere(void);

Output – diameter of orifice from brake pipe to at-

mosphere, [m].

SetAuxReservoirOrificeToAtm HRESULT _stdcall SetAuxReservoirOri-

ficeToAtm([in] double aDiameter);

Input aDiameter – diameter of orifice from auxiliary

reservoir to atmosphere, [m].

Sets the diameter of an orifice from auxiliary reservoir

to atmosphere. Can be applied for simulation of leak-

ages, consumption for pantograph actuator and so on.

GetAuxReservoirOrificeToAtm double _stdcall GetAuxReservoirOrificeToAtm(void);

Output – diameter of orifice from auxiliary reservoir

to atmosphere, [m].

SetBPCloggedRatio HRESULT _stdcall SetBPCloggedRatio([in] double

aRatio);

Input aRatio is the ratio of clogged brake pipe square

to full brake pipe square.

Sets the ratio of clogged brake pipe square to full

brake pipe square:

1 corresponds to fully clogged brake pipe,

0 corresponds to non-clogged (clean) brake pipe.

GetBPCloggedRatio double _stdcall GetBPCloggedRatio(void)

Returns ratio of clogged brake pipe squa re to full

brake pipe square.

SetCVReleaseEnabled HRESULT _stdcall SetCVReleaseEnabled([in] VAR-

IANT_BOOL aReleaseEnabled)

Universal Mechanism 9 20-44 Chapter 20. UM COM Interfaces

Sets if a control valve can release brake cylinders or

not. Used for simulation of locked brakes.

GetCVReleaseEnabled VARIANT_BOOL _stdcall GetCVReleaseEna-

bled(void)

Returns if a control valve enables to release brake cyl-

inders. Used for simulation of locked brakes.

GetFeedPipePressure double _stdcall GetFeedPipePressure(void)

Returns the pressure [Pa] in feed pipe of a vehicle. If

no feed pipe on the vehicle, returns zero.

SetFeedPipePressure HRESULT _stdcall SetFeedPipePressure([in] double

aPressure)

Sets the pressure [Pa] in feed pipe of a vehicle.

SetTargetBCPressureEP HRESULT _stdcall SetTargetBCPressureEP([in] int

anIndex, [in] double aPressure)

Set the target pressure for a brake cylinder. This func-

tion changes the pressure not instantly; it uses current

control valve diagrams of filling and releasing the

brake cylinders. If the brake pipe pressure corresponds

to higher brake cylinder pressure, this higher pressure

will be set in brake cylinders.

Input:

anIndex – brake cylinder index (starts from 0);

aPressure – pressure in brake cylinder, Pa.

This function can be used for the simulation of elec-

tronically controlled pneumatic brakes.

GetMaxPneumaticBrakeForce double _stdcall GetMaxPneumaticBrakeForce(void)

Returns maximal force [N] of pneumatic brake of a

vehicle.

GetMaxBCPressure double _stdcall GetMaxBCPressure(void)

Returns maximal possible brake cylinder pressure [Pa]

of a vehicle.

GetBCBrakeForce double _stdcall GetBCBrakeForce([in] int anIndex)

Returns brake force which is provided by a brake cyl-

inder.

Input:

anIndex is brake cylinder index (starts from 0).

For example, if a 4-axle vehicle model has 2 brake

cylinders, this function returns the brake force per 2

wheelsets; if the same vehicle has 8 cylinders then the

function returns a half of the force per a wheelset and

Universal Mechanism 9 20-45 Chapter 20. UM COM Interfaces

so on (see also the example in the description of the

CalcBlendingBrakeDemand function).

GetWSCount int _stdcall GetWSCount(void)

Returns the number of wheelsets of a vehicle.

The total number of wheelsets and the number of mo-

tor wheelsets are set by identifiers wheelset_count and

motor_count respectively. By default, wheel-

set_count=4 and motor_count=0, that corresponds to

4-axle car.

Note that in UM one-dimensional vehicle models, mo-

tor wheelsets are always last ones in a model.

SetBCUSignalUsing HRESULT _stdcall SetBCUSignalUsing([in] VARI-

ANT_BOOL aState);

If aState=true then a control valve on a vehicle uses

the control pressure calculated by BCU, otherwise –

the control valve uses pressure from the brake pipe.

GetBCUSignalUsing(void) VARIANT_BOOL _stdcall GetBCUSignalUs-

ing(void);

Returns the state of BCU signal using.

SetEmergencyState HRESULT _stdcall SetEmergencyState([in] VARI-

ANT_BOOL aState);

If aState=true, it opens an orifice from brake pipe to

atmosphere to provide the brake pipe pressure de-

screasing in emergency barking mode. If aState=false,

it closes the orifice.

GetEmergencyState VARIANT_BOOL _stdcall GetEmergen-

cyState(void);

Returns the state of an orifice from brake pipe to at-

mosphere for emergency braking.

Output:

True – the orifice is open (emergency braking is on);

False – the orifice is closed (emergency braking is

off).

GetActiveForce double _stdcall GetActiveForce(void);

Returns active (traction or brake) force applied to a

vehicle not taking into account adhesion limit. Force

in Newtons.

SetATSState HRESULT _stdcall SetATSState([in] VARI-

Universal Mechanism 9 20-46 Chapter 20. UM COM Interfaces

ANT_BOOL aState);

Set the state of automatic train stop system.

If aState=true, the system is activated that leads to

opening the orifice in brake pipe to atmosphere.

If aState=false, the system is deactivated and there is

no connection with atmosphere.

GetATSState VARIANT_BOOL _stdcall GetATSState(void);

Returns the state of automatic train stop system.

SetCompressorSupply HRESULT _stdcall SetCompressorSupply([in] double

aSupply);

Sets the supply of compressor, cubic meter per sec-

ond.

GetCompressorSupply(void) double _stdcall GetCompressorSupply(void);

Returns the supply of compressor, cubic meter per

second.

GetIsAuxReservoirFed VARIANT_BOOL _stdcall GetIsAuxReser-

voirFed(void);

Returns if auxiliary reservoir is fed.

SetIsAuxReservoirFed HRESULT _stdcall SetIsAuxReservoirFed([in] VAR-

IANT_BOOL aState);

Sets or cuts off feeding of auxiliary reservoir.

SetEPUsing HRESULT _stdcall SetEPUsing([in] VARI-

ANT_BOOL aState);

Sets the activity of electro-pneumatic brake on the ve-

hicle. This function sets the availability of electro-

pneumatic brake but not applies it.

GetEPUsing VARIANT_BOOL _stdcall GetEPUsing(void);

Returns the activity of electro-pneumatic brake on the

vehicle: is it available or not.

GetTargetCVPressure double _stdcall GetTargetCVPressure([in] long anIn-

dex);

Returns pressure in brake cylinders which should be

obtained by using control signal from control valve.

GetTargetLocoBVPressure double _stdcall GetTargetLocoBVPressure([in] long

anIndex);

Universal Mechanism 9 20-47 Chapter 20. UM COM Interfaces

Returns pressure in brake cylinders which should be

obtained by using control signal from auxiliary brake

valve.

GetTargetEPPressure double _stdcall GetTargetEPPressure([in] long anIn-

dex);

Returns pressure in brake cylinders which should be

obtained by using control signal from electro-

pneumatic brake system.

GetTargetBCUPressure double _stdcall GetTargetBCUPressure([in] long

anIndex);

Returns pressure in brake cylinders which should be

obtained by using control signal from brake control

unit.

ApplyHoldingBrakeInManualMode HRESULT _stdcall

ApplyHoldingBrakeInManualMode([in] VARI-

ANT_BOOL Apply);

Apply holding brake in manual mode.

Input: true – apply holding brake, false – release hold-

ing brake.

IsAppliedHoldingBrakeInManualMode VARIANT_BOOL _stdcall

IsAppliedHoldingBrakeInManualMode(void);

Returns if holding brake is apllied in manual mode.

The group of methods related to work with railroad track type.

GetFrontWSetElementID int _stdcall GetFrontWSetElementID(void);

Returns GlobalID of current element under the first

wheelset of the vehicle. Global ID’s of railroad ele-

ments are defined from reading of railroad XML file,

Sect. 20.6.8. "IRailRoad interface", p. 20-70.

GetFrontWSetSectionID int _stdcall GetFrontWSetSectionID(void);

Returns ID of active section of current element under

the first wheelset of the vehicle (see method above).

1– first section; 2 – second one, etc.

GetFrontWSetLocalSectionPosition double _stdcall GetFrontWSetLocalSectionPosi-

tion(void);

Returns current local position in meters of the first

wheelset of the vehicle on the active section of cur-

rent element (see methods above). Returning value is

limited by zero and limit length defined for the sec-

Universal Mechanism 9 20-48 Chapter 20. UM COM Interfaces

tion in railroad XML file, Sect. 20.6.8. "IRailRoad

interface", p. 20-70.

GetFrontWSetLocalSectionPositionRatio double _stdcall GetFrontWSetLocalSectionPosition-

Raio(void);

Returns current local position of the first wheelset of

the vehicle on the active section of current element

(see methods above) as ratio within [0, 1] range,

where 0 corresponds to the beginning of the section

and 1 corresponds to the end of the section. In com-

parision with the GetLocalSectionPosition presented

above it provides more smooth train visualization for

the external graphical engine.

GetFrontWSetSlope double _stdcall GetFrontWSetSlope(void);

Returns slope of railroad track under the first wheel-

set of the vehicle in ppm.

GetFrontWSetRRPosition HRESULT _stdcall GetFrontWSetRRPosition([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPosition, [out] int * ElementType);

Returns current position of the first wheelset of the

vehicle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPosition is local position in meters on the active

section of current element,

ElementType is a flag of positioning of the front

point on the railroad (0 if current element is a road; 1

if it is a switch; 2 if position is out of element and

start mode is active).

GetFrontWSetRRPositionRatio HRESULT _stdcall GetFrontWSetRRPosition ([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPositionRatio, [out] int * ElementType);

Returns current position of the first wheelset of the

vehicle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPositionRatio is local position ratio in [0, 1]

range, where 0 corresponds to the beginning of the

section and 1 corresponds to the end of the section.

ElementType is a flag of positioning of the wheelset

on the railroad (0 if current element is a road; 1 if it is

a switch; 2 if position is out of element and start

Universal Mechanism 9 20-49 Chapter 20. UM COM Interfaces

mode is active).

GetFrontPointElementID int _stdcall GetFrontPointElementID(void);

Returns GlobalID of current element under the front

point of the vehicle. Global ID’s of railroad elements

are defined from reading of railroad XML file,

Sect. 20.6.8. "IRailRoad interface", p. 20-70.

GetFrontPointSectionID int _stdcall GetFrontPointSectionID(void);

Returns ID of active section of current element under

the front point of the vehicle (see method above). 1–

first section; 2 – second one, etc.

GetFrontPointLocalSectionPosition double _stdcall GetFrontPointLocalSectionPosi-

tion(void);

Returns current local position in meters of the front

point of the vehicle on the active section of current

element (see methods above). Returning value is lim-

ited by zero and limit length defined for the section

in railroad XML file, Sect. 20.6.8. "IRailRoad

interface", p. 20-70.

GetFrontPointLocalSectionPositionRatio double _stdcall GetFrontPointLocalSectionPosition-

Raio(void);

Returns current local position of the front point of the

vehicle on the active section of current element (see

methods above) as ratio within [0, 1] range, where 0

corresponds to the beginning of the section and 1 cor-

responds to the end of the section. In comparision

with the GetLocalSectionPosition presented above it

provides more smooth train visualization for the ex-

ternal graphical engine.

GetFrontPointRRPosition HRESULT _stdcall GetFrontPointRRPosition([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPosition, [out] int * ElementType);

Returns current position of the front point of the ve-

hicle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPosition is local position in meters on the active

section of current element,

ElementType is a flag of positioning of the front

point on the railroad (0 if current element is a road; 1

if it is a switch; 2 if position is out of element and

Universal Mechanism 9 20-50 Chapter 20. UM COM Interfaces

start mode is active).

GetFrontPointRRPositionRatio HRESULT _stdcall GetFrontPointRRPosition ([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPositionRatio, [out] int * ElementType);

Returns current position of the front point of the ve-

hicle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPositionRatio is local position ratio in [0, 1]

range, where 0 corresponds to the beginning of the

section and 1 corresponds to the end of the section.

ElementType is a flag of positioning of the front

point on the railroad (0 if current element is a road; 1

if it is a switch; 2 if position is out of element and

start mode is active).

GetLastPointElementID int _stdcall GetLastPointElementID(void);

Returns GlobalID of current element under the last

point of the vehicle. Global ID’s of railroad elements

are defined from reading of railroad XML file,

Sect. 20.6.8. "IRailRoad interface", p. 20-70.

GetLastPointSectionID int _stdcall GetLastPointSectionID(void);

Returns ID of active section of current element under

the last point of the vehicle (see method above). 1–

first section; 2 – second one, etc.

GetLastPointLocalSectionPosition double _stdcall GetLastPointLocalSectionPosi-

tion(void);

Returns current local position in meters of the last

point of the vehicle on the active section of current

element (see methods above). Returning value is lim-

ited by zero and limit length defined for the section

in railroad XML file, Sect. 20.6.8. "IRailRoad

interface", p. 20-70.

GetLastPointLocalSectionPositionRatio double _stdcall GetLastPointLocalSectionPosition-

Raio(void);

Returns current local position of the last point of the

vehicle on the active section of current element (see

methods above) as ratio within [0, 1] range, where 0

corresponds to the beginning of the section and 1 cor-

responds to the end of the section. In comparision

with the GetLocalSectionPosition presented above it

Universal Mechanism 9 20-51 Chapter 20. UM COM Interfaces

provides more smooth train visualization for the ex-

ternal graphical engine.

GetLastPointRRPosition HRESULT _stdcall GetLastPointRRPosition([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPosition, [out] int * ElementType);

Returns current position of the last point of the vehi-

cle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPosition is local position in meters on the active

section of current element,

ElementType is a flag of positioning of the last point

on the railroad (0 if current element is a road; 1 if it is

a switch; 2 if position is out of element and start

mode is active).

GetLastPointRRPositionRatio HRESULT _stdcall GetLastPointRRPosition ([out]

int * ElementID, [out] int * SectionID, [out] double *

LocalPositionRatio, [out] int * ElementType);

Returns current position of the last point of the vehi-

cle on the railroad. See methods above.

Output:

ElementID is GlobalID of current element,

SectionID is ID of active section of current element,

LocalPositionRatio is local position ratio in [0, 1]

range, where 0 corresponds to the beginning of the

section and 1 corresponds to the end of the section.

ElementType is a flag of positioning of the last point

on the railroad (0 if current element is a road; 1 if it is

a switch; 2 if position is out of element and start

mode is active).

Universal Mechanism 9 20-52 Chapter 20. UM COM Interfaces

20.6.5.1. Overturning factor

Overturning factor is the ration between the current speed of the vehicle and the critical

speed of the vehicle in the particular curve. Critical speed on curved track, which corresponds to

the situation when inner wheels lift off rail, can be calculated according to the following formu-

la:

𝑉𝑚𝑎𝑥 = √
𝑅𝑔(ℎ sin𝜃 + 𝑙 cos 𝜃)

ℎ cos 𝜃 − 𝑙 sin 𝜃
,where

R is the current radius of curvature of the transient curve or constant radius curve,

g is free fall acceleration,

h is the vertical position of the vehicle center of mass relative to rail head,

l is a half gauge,

𝜃 is a cant angle.

Railcar force diagram on a superelevated curve is given below.

Universal Mechanism 9 20-53 Chapter 20. UM COM Interfaces

20.6.5.2. Brake fade factor

Brake fade factor depends on shoes temperature and expressed by the equation and diagram

like showed below.

You can set this function by setting curve property in the brake fade coefficient file.

Current temperature is calculated by heat transfer of brake equipment.

Heat balance on every integration time step is described with the following equation:

𝐶𝑝 ∙ 𝑀 ∙
𝑑𝑇𝑏

𝑑𝑡
= 𝑄̇𝑖𝑛 − 𝑄̇𝑜𝑢𝑡, where

𝐶𝑝 is the specific heat of shoes,

𝑀 is the mass of the shoes and other brake equipment;

𝑄̇𝑖𝑛 is the heat input applied to a brake shoes during brake application (power);

𝑄̇𝑜𝑢𝑡 is the transfer of heat from the shoes to the air around (power);

𝑇𝑏 is the current temperature of the shoes.

Please note, you can set the specific heat of shoes and the mass of the shoes in the brake fade

coefficient file.

The power of the heat input is

Universal Mechanism 9 20-54 Chapter 20. UM COM Interfaces

𝑄̇𝑖𝑛 = 𝐹𝑏 ∙ 𝑉, where

𝐹𝑏 is the current brake force;

V is the current vehicle speed;

The power of the heat output is

𝑄̇𝑜𝑢𝑡 = ℎ𝑐 ∙ 𝐴 ∙ (𝑇𝑏 − 𝑇∞), where

ℎ𝑐 is the film coefficient and is velocity dependent;

A is the area of the shoes.

(ℎ𝑐 ∙ 𝐴) product – a factor in the equation for 𝑄̇𝑜𝑢𝑡 – can be expressed as polynom shown be-

low.

ℎ𝑐 ∙ 𝐴 = 𝑏1𝑉 + 𝑏2, where

V is vehicle speed,

b1, b2 are polynom coefficients.

You can set values of the polynomes in the brake fade coefficient file.

Universal Mechanism 9 20-55 Chapter 20. UM COM Interfaces

20.6.6. IUMComLocomotive interface

IUMComLocomotive is a locomotive. The interface is used for control of traction and braking

modes.

Interface: IUMComLocomotive

Hierarchy: IUnknown – IUMComTrainVehicle – IUMComLocomotive

Methods Description

AuxBrakePositionCount int _stdcall AuxBrakePositionCount(void);

Returns count of auxiliary brake positions

BrakeValvePositionCount int _stdcall BrakeValvePositionCount(void);

Returns count of brake valve positions

DynamicBrakePositionCount int _stdcall DynamicBrakePositionCount(void);

Returns count of dynamic brake positions

GetAuxBrakePosition int _stdcall GetAuxBrakePosition(void);

Returns current auxiliary brake valve position

GetBrakeValvePosition int _stdcall GetBrakeValvePosition(void);

Returns current brake valve position

GetBrakeValvePositionCom-

ment

LPSTR _stdcall GetBrakeValvePositionComment([in] long

Index);

Input: Index=1.. BrakeValvePositionCount – Position of

Brake Vale

Output: Comment to the brake valve position

GetAuxBrakeValvePosition-

Comment

LPSTR _stdcall GetAuxBrakeValvePositionComment([in]

long Index);

Input: Index=1..AuxBrakePositionCount – Position of Loco-

motive Brake Valve

Output: Comment to the locomotive brake valve position

GetDynamicBrakePosition int _stdcall GetDynamicBrakePosition(void);

Returns current dynamic brake position

GetDynBrakeCurrentFactor double _stdcall GetDynBrakeCurrentFactor(void);

Returns scale factor for dynamic brake current calculation

GetEntranceCurrent double _stdcall GetEntranceCurrent(void);

Returns entrance current, A

GetEqualizingReservoirPressure double _stdcall GetEqualizingReservoirPressure(void);

Output: Equalizing reservoir pressure

GetGearRatio double _stdcall GetGearRatio(void);

Returns ratio of reducer gear

GetMainReservoirPressure double _stdcall GetMainReservoirPressure(void);

Output: Main reservoir pressure, Pa

SetMainReservoirPressure HRESULT _stdcall SetMainReservoirPressure([in] double

aPressure);

Input: aPressure – main reservoir pressure, Pa

Universal Mechanism 9 20-56 Chapter 20. UM COM Interfaces

GetBrakeValvePressure double _stdcall GetBrakeValvePressure(void);

Output: Pressure in brake pipe directly after driver brake

valve, Pa

GetMotorActive VARIANT_BOOL _stdcall GetMotorActive([in] long Index);

Input: Index = 0..GetMotorCount-1 – index of motor

Output: True (1) is the motor is active

GetMotorCount long _stdcall GetMotorCount(void);

Output: number of traction motors. For 3D locomotive mod-

els only

GetMotorCurrent double _stdcall GetMotorCurrent([in] long Index);

Output: electrical current in anchor of a traction motor num-

ber Index, A

GetMotorName LPSTR _stdcall GetMotorName([in] long Index);

Input: Index = 0..GetMotorCount-1 – index of motor

Output: Name of UM force element for traction torque or

name in form of Motor#N – where N – is the Index+1

GetMotorRPM double _stdcall GetMotorRPM([in] long Index);

Output: rotation frequency of a traction motor number Index,

RPM

GetPowerConsumption double _stdcall GetPowerConsumption();

Output: electrical motor power consumption for locomotives

with motor voltage 900 V (E43000), kW

GetReversePosition int _stdcall GetReversePosition(void);

Returns position of reverser: -1 – backward, 0 – neutral, 1 –

forward run

GetRWheel double _stdcall GetRWheel();

Output: radius of a loco wheel, m

GetThrottlePosition int _stdcall GetThrottlePosition(void);

Returns current throttle position

GetThrottleContPosition double _stdcall GetThrottlePosition(void);

Returns current throttle position

GetThrottleCurrentFactor double _stdcall GetThrottleCurrentFactor(void);

Returns scale factor for throttle current calculation

GetTractionEffort double _stdcall GetTractionEffort ();

Output: traction effort (N) in of a loco as a sum of traction

efforts of wheel-motor sets

SetPowerConsumption HRESULT _stdcall SetPowerConsumption([in] double

aPowerConsumption);

Resets electrical motor power consumption by aPowerCon-

sumption in kW

SetAuxBrakePosition HRESULT _stdcall SetAuxBrakePosition([in] int Value);

Sets auxiliary brake position. Value starts from 1 up to

AuxBrakePositionCount.

Universal Mechanism 9 20-57 Chapter 20. UM COM Interfaces

SetBrakeValvePosition HRESULT _stdcall SetBrakeValvePosition([in] int Value);

Sets brake valve position. Value starts from 1 up to Brake-

ValvePositionCount.

SetDynamicBrakePosition HRESULT _stdcall SetDynamicBrakePosition([in] int Value

);

Sets dynamic brake position. Value starts from 0 up to Dy-

namicBrakePositionCount.

SetDynBrakeCurrentFactor HRESULT _stdcall SetDynBrakeCurrentFactor([in] int aD-

ynBrakeCurrentFactor);

Sets scale factor for dynamic brake current calculation

SetEntranceCurrent HRESULT _stdcall SetEntranceCurrent ([in] double aCur-

rent);

Sets entrance current in amperes.

SetGearRatio HRESULT _stdcall SetGearRatio([in] double aGearRatio);

Sets reducer gear ratio.

SetMotorActive HRESULT _stdcall SetMotorActive([in] long Index, [in]

VARIANT_BOOL Active);

Input: Index = 0..GetMotorCount-1 – index of motor

Active: True (1) to set the motor active, False (0) to make it

inactive

SetReversePosition HRESULT _stdcall SetReversePosition([in] long Value);

Sets position of reverser: -1 – backward, 0 – neutral, 1 – for-

ward run

SetRWheel HRESULT _stdcall SetRWheel([in] double aRWheel);

Sets radius of loco wheels in meters.

SetThrottlePosition HRESULT _stdcall SetThrottlePosition([in] int Position);

Sets throttle (traction) position

SetThrottleContPosition HRESULT _stdcall SetThrottleContPosition([in] double Posi-

tion);

Sets throttle (traction) position

SetThrottleCurrentFactor HRESULT _stdcall SetThrottleCurrentFactor([in] double

aThrottleCurrentFactor);

Sets scale factor for throttle current calculation

ThrottlePositionCount int _stdcall ThrottlePositionCount(void);

Returns count of throttle positions of the locomotive

EmergencyBrakeOn HRESULT _stdcall EmergencyBrakeOn(void);

Opens a valve in brake pipe for emergency braking. It is a

feature of driver’s brake valve (DBV), works only if DBV

exists on the current locomotive

EmergencyBrakeOff HRESULT _stdcall EmergencyBrakeOff(void);

Closes a valve in brake pipe for emergency braking. It is a

feature of driver’s brake valve (DBV), works only if DBV

exists on the current locomotive

Universal Mechanism 9 20-58 Chapter 20. UM COM Interfaces

AutoPurgerOn HRESULT _stdcall AutoPurgerOn(void);

Opens so-called autopurger.

AutoPurgerOff HRESULT _stdcall AutoPurgerOff(void);

Closes so-called autopurger.

C12On HRESULT _stdcall C12On (void);

Turn on C12 valve (Stop Cock)

C12Off HRESULT _stdcall C12Off(void);

Turn off C12 valve (Stop Cock)

C5On HRESULT _stdcall C5On (void);

Turn on C5 valve

C5Off HRESULT _stdcall C5Off(void);

Turn off C5 valve

CompressorOn HRESULT _stdcall CompressorOn(void);

Turn compressor on, if compressor exists on the current lo-

comotive

CompressorOff HRESULT _stdcall CompressorOff(void);

Turn compressor off, if compressor exists on the current lo-

comotive

PurgerOn HRESULT _stdcall PurgerOn(void);

Opens purger. It works if brake pipe pressure is within 3-4.9

bar.

PurgerOff HRESULT _stdcall PurgerOff(void);

Closes purger.

SetDBVLeakageFlow HRESULT _stdcall SetDBVLeakageFlow ([in] double

aFlow);

Set leakage flow for a vehicle with brake valve. For example,

for open B2 or hose cock it must be approximately 0.5. Do

not use very high value, more than 10.

GetDBVLeakageFlow double _stdcall GetDBVLeakageFlow (void);

Returns leakage flow for a vehicle with brake valve.

SetERLeakageFlow HRESULT _stdcall SetERLeakageFlow ([in] double aFlow);

Set leakage flow for equalizing reservoir of brake valve.

GetERLeakageFlow double _stdcall GetERLeakageFlow (void);

Returns leakage flow for equalizing reservoir of brake valve.

SetPurgerFactor HRESULT _stdcall SetPurgerFactor([in] double aFactor);

Sets scale factor for brake cylinders release speed by purger

GetPurgerFactor double _stdcall GetPurgerFactor (void);

Returns scale factor for brake cylinders release speed by

purger

SetAutoPurgerFactor HRESULT _stdcall SetAutoPurgerFactor([in] double aFac-

tor);

Sets scale factor for brake cylinders release speed by auto-

purger

Universal Mechanism 9 20-59 Chapter 20. UM COM Interfaces

GetAutoPurgerFactor double _stdcall GetAutoPurgerFactor (void);

Returns scale factor for brake cylinders release speed by au-

topurger

GetTractionPower double _stdcall GetTractionPower (void);

Returns power of traction force (W).

SetTargetBPPressure HRESULT _stdcall SetTargetBPPressure ([in] double aT-

argetBPPressure);

Sets the target pressure aTargetBPPressure in brake pipe

which should be reached for the current brake valve position.

As a rule the target brake pipe pressure is constant for certain

brake valve position and must not be changed. This function

is used if it is necessary to change brake pipe pressure value

on the current brake valve position, for example when the

pressure in brake pipe depends on the angle of rotation of

brake valve handle.

Initial brake pipe pressure for a brake valve position is set by

parameter bptargetpressure in brakevalveposition block in BV

file.

Example:

with brakevalveposition;

 mode="sbraking";

 name="Service brake";

 comment="Braking position";

 position=3;

 gradualchanging=true;

 ReleaseEnabled=true;

 bptargetpressure=340000;

In this example, when the brake valve handle is moved to the

third position (position=3), the pressure will decrease till

340000 Pa (bptargetpressure=340000) by the rate of service

braking (mode="sbraking"). Parameter gradualchanging=true

means that this handle position has an area in which the brake

pipe pressure depends on the angle of rotation of the handle

and user can change the target pressure in the brake pipe.

GetTargetBPPressure double _stdcall GetTargetBPPressure (void);

Returns the target pressure in brake pipe which should be

reached for current brake valve position.

GetGradualChanging VARIANT_BOOL _stdcall GetGradualChanging (void);

Returns possible (true) or not (false) to change the target

brake pipe pressure on the current brake valve position. It is

just information for user that this brake valve position has an

area where the brake pipe pressure depends on the angle of

Universal Mechanism 9 20-60 Chapter 20. UM COM Interfaces

rotation of the handle. This parameter does not enable or dis-

able the changing the brake pipe pressure.

GetBrakeValvePositionName LPSTR _stdcall GetBrakeValvePositionName ([in] long aIn-

dex);

Returns the name of brake valve position with index aIndex.

The name of a position is set by parameter name in BV file.

For example:

with brakevalveposition;

 mode="sbraking";

 name="Service brake";

 comment="Braking position";

 position=2;

 gradualchanging=false;

 bptargetpressure=300000;

Here the name of the position is "Service brake".

SetTargetBCPressure HRESULT _stdcall SetTargetBCPressure ([in] double aFac-

tor);

Sets the target pressure in locomotive brake cylinder (aT-

argetBCPressure) which should be reached for current auxil-

iary (locomotive) brake valve position.

This function is used if it is necessary to change brake cylin-

der pressure value on the current auxiliary brake valve posi-

tion, for example when the pressure in brake cylinder depends

on the angle of rotation of auxiliary brake valve handle.

Initial brake cylinder pressure for a brake is set by parameter

bctargetpressure in the auxbrakevalveposition block in LBV

file.

Example:

with auxbrakevalveposition;

 name="Braking";

 comment="Incremental braking position";

 mode="braking";

 position=2;

 GradualChanging=true;

 bctargetpressure=380000;

In this example, when the auxiliary brake valve handle is

moved to the second position (position=2), the pressure in

brake cylinders of a locomotive will increase till 380000 Pa

(bctargetpressure=380000). Parameter gradualchanging=true

means that this handle position has an area in which the brake

cylinder pressure depends on the angle of rotation of the han-

dle.

GetTargetBCPressure double _stdcall GetTargetBCPressure (void);

Universal Mechanism 9 20-61 Chapter 20. UM COM Interfaces

Returns the target pressure in brake cylinder of a locomotive

which should be reached for current auxiliary brake valve po-

sition.

GetAuxGradualChanging VARIANT_BOOL _stdcall GetAuxGradualChanging (void

);

Returns possible (true) or not (false) to change the target pres-

sure in locomotive brake cylinders on the current auxiliary

brake valve position. It is just information for user that this

auxiliary brake valve position has an area where the brake

cylinder pressure depends on the angle of rotation of the han-

dle. This parameter does not enable or disable the changing

the locomotive brake cylinder pressure.

GetAuxBrakeValvePosition-

Name

LPSTR _stdcall GetAuxBrakeValvePositionName ([in] long

aIndex);

Returns the name of auxiliary brake valve position with index

aIndex. The name of a position is set by parameter name in

LBV file. For example:

with auxbrakevalveposition;

 name="Full brake";

 comment="Full braking position";

 mode="braking";

 position=3;

 GradualChanging=false;

 bctargetpressure=380000;

Here the name of the position is "Full brake".

GetReleaseEnabled VARIANT_BOOL _stdcall GetReleaseEnabled (void);

Returns if it is possible or not to increase brake pipe pressure

(release brakes) for current brake valve position. This pa-

rameter is used only for braking positions. As a rule the value

of the parameter depends on the type of brake system: false –

for trains with graduated release operations; true – for trains

which have only direct release operations.

SetReleaseEnabled HRESULT _stdcall SetReleaseEnabled([in] VARI-

ANT_BOOL aState);

Sets the possibility to increase brake pipe pressure for the cur-

rent brake valve position. This parameter is used only for

braking positions. As a rule the value of the parameter de-

pends on the type of brake system: false – for trains with

graduated release operations; true – for trains which have on-

ly direct release operations.

GetInstantFuelConsumption double _stdcall GetInstantFuelConsumption (void);

Returns instant fuel consumption, kg/min

Universal Mechanism 9 20-62 Chapter 20. UM COM Interfaces

GetRemainingFuel double _stdcall GetRemainingFuel (void);

Returns remaining fuel, kg

SetRemainingFuel HRESULT _stdcall SetRemainingFuel ([in] double Value);

Sets the value of remaining fuel, kg

GetCommonFuelConsumption double _stdcall GettCommonFuelConsumption (void);

Returns common fuel consumption from start simulation

SetCommonFuelConsumption HRESULT _stdcall SetRemainigFuel ([in] double Value);

Sets the value of common fuel consumption from start simu-

lation, kg

GetTotalMotorForce double _stdcall GetTotalMotorForce(void)

Returns the total motor force of a locomotive. If motor are in

traction mode then the sign of the force will be as velocity

sign, else in brake mode the sign of the force will be opposite.

GetDynamicBrakeContPosition double _stdcall GetDynamicBrakeContPosition(void)

Returns current dynamic brake position.

SetDynamicBrakeContPosition HRESULT _stdcall SetDynamicBrakeContPosition([in] dou-

ble aPosition)

Sets continuous dynamic brake position.

GetMaxDynamicBrakeForce double _stdcall GetMaxDynamicBrakeForce([in] double

aVelocity, [in] int aPosition)

Returns maximal dynamic brake force [N] of a locomotive.

SetNominalBPPressureByDBV HRESULT _stdcall SetNominalBPPressureByDBV([in] dou-

ble aPressure)

Sets nominal (regular operation) pressure in train brake pipe.

When pressure changed, the brake pipe will be feeded or re-

leased through driver’s brake valve till the needed value.

GetNominalBPPressureByDBV double _stdcall GetNominalBPPressureByDBV(void)

Returns nominal (regular operation) pressure in train brake

pipe.

SetFastFill HRESULT _stdcall SetFastFill([in] VARIANT_BOOL

aState)

If aState = True then this function sets release mode for the

driver’s brake valve. The current position of driver’s barke

valve is ignored. Can be used for example, to model a “fast

fill” button for old locomotives which have no the “release”

position on driver’s brake valves.

If aState = False then the driver’s brake valve works accord-

ing to the current position.

GetFastFill VARIANT_BOOL _stdcall GetFastFill(void)

Returns the state of “fast fill” button.

GetWSMotorForce double _stdcall GetWSMotorForce([in] int aWSIndex)

Returns the applied motor force for the wheelset defined by

wheelset index aWSIndex. Depending on the mode, it can be

Universal Mechanism 9 20-63 Chapter 20. UM COM Interfaces

traction or ED brake force. This force value takes into

account adhesion limit.

GetWSMotorPotentialForce double _stdcall GetWSMotorPotentialForce([in] int aWS-

Index)

Returns the potential motor force for the wheelset defined by

wheelset index aWSIndex. Depending on the mode, it can be

traction or ED brake force. This force value does not take into

account adhesion limit.

SetDynBrakeEnabled HRESULT _stdcall SetDynBrakeEnabled([in] VARI-

ANT_BOOL aState);

Sets dynamic brakes enabled.

GetDynBrakeEnabled VARIANT_BOOL _stdcall GetDynBrakeEnabled(void);

Returns if dynamic brake enabled or not.

SetBrakeValveEnabled HRESULT _stdcall SetBrakeValveEnabled([in] VARI-

ANT_BOOL aState);

Sets brake valve enabled.

GetBrakeValveEnabled VARIANT_BOOL _stdcall GetBrakeValveEnabled(void);

Returns if brake valve enabled or not.

GetDieselRPM double _stdcall GetDieselRPM(void);

Returns diesel RPM.

GetERAdjustmentPressure double _stdcall GetERAdjustmentPressure (void);

Returns adjustment pressure for equalizing reservoir.

SetERAdjustmentPressure HRESULT _stdcall SetERAdjustmentPressure([in] double

aPressure);

Sets the adjustment pressure for equalizing reservoir.

GetFlowRateVariable

VARIANT_BOOL _stdcall GetFlowRateVariable(void);

Returns information for user, is it specified by the construc-

tion of the driver’s brake valve to change flow rate on the cur-

rent position.

GetFlowRatio double _stdcall GetFlowRatio(void);

Returns the flow rate for current driver’s brake valve position.

By default, this value is 1.

SetFlowRatio HRESULT _stdcall SetFlowRatio([in] double aRatio);

Sets the flow rate for current driver’s brake valve position.

GetTargetBPMaxPressure double _stdcall GetTargetBPMaxPressure (void);

Returns the maximal target brake pipe pressure for current

driver brake valve position. Used for position when the pres-

sure in brake pipe depends on the angle of rotation of brake

valve handle.

GetTargetBPMinPressure double _stdcall GetTargetBPMinPressure (void);

Returns the minimal target brake pipe pressure for current

driver brake valve position. Used for position when the pres-

Universal Mechanism 9 20-64 Chapter 20. UM COM Interfaces

sure in brake pipe depends on the angle of rotation of brake

valve handle.

GetFlowRatioMax double _stdcall GetFlowRatioMax (void);

Returns the maximal flow rate ratio for current driver brake

valve position. Used for position when the flow rate to and

from brake pipe in brake and release modes depends on the

angle of rotation of brake valve handle.

GetFlowRatioMin double _stdcall GetFlowRatioMin (void);

Returns the mimnimal flow rate ratio for current driver brake

valve position. Used for position when the flow rate to and

from brake pipe in brake and release modes depends on the

angle of rotation of brake valve handle.

SetDBVClosed HRESULT _stdcall SetDBVClosed([in] VARIANT_BOOL

aState);

Close or opens the connection between brake pipe and driver

brake valve.

GetDBVClosed VARIANT_BOOL _stdcall GetDBVClosed(void);

Returns if the connection between brake pipe and driver brake

valve is closed or not.

GetMotorTractionCurrent double _stdcall GetMotorTractionCurrent ([in] long Index);

Output: electrical current [A] of a traction motor number In-

dex in traction mode.

GetMotorDynBrakeCurrent double _stdcall GetMotorDynBrakeCurrent ([in] long Index);

Output: electrical current [A] of a traction motor number In-

dex in brake mode.

GetERClosed VARIANT_BOOL _stdcall GetERClosed(void);

Returns if equalizing reservoir is closed i.e. no connection to

any other device and pressure in equilizing reservoir keeps

constant.

SetERClosed HRESULT _stdcall SetERClosed([in] VARIANT_BOOL

aState);

Close or open connection of equilizing reservoir to any other

device. If equilizing reservoir is closed its pressure keeps

constant.

GetERClosed VARIANT_BOOL _stdcall GetERClosed(void);

Returns if equalizing reservoir is closed i.e. no connection to

any other device and pressure in equilizing reservoir keeps

constant.

SetERClosed HRESULT _stdcall SetERClosed([in] VARIANT_BOOL

aState);

Close or open connection of equilizing reservoir to any other

device. If equilizing reservoir is closed its pressure keeps

constant.

Universal Mechanism 9 20-65 Chapter 20. UM COM Interfaces

SetMotorVoltage HRESULT _stdcall SetMotorVoltage([in] double Value);

Sets electrical motor entrance voltage by Value in V

GetEnergyConsumption double _stdcall GetEnergyConsumption(void);

Returns electric energy consumption of all traction motors of

loco in traction mode, in kWh

GetEnergyRecuperation double _stdcall GetEnergyRecuperation(void);

Returns electric energy recuperation of all traction motors of

loco in dynamic brake mode, in kWh

SetLineVoltage HRESULT _stdcall SetLineVoltage([in] double Value);

Sets line voltage by Value in kV

GetEntranceCurrent double _stdcall GetEntranceCurrent(void);

Returns entrance current of loco, in A

Entrance current is calculated as:

 𝐼𝑒 = ∑ 𝐴𝑖 ∙ (𝑁𝑜𝑡𝑐ℎ𝑎𝑖1 ∙ 𝑆𝑝𝑒𝑒𝑑𝑎𝑖2 ∙ 𝐶𝑀1𝑎𝑖3 ∙ 𝐿𝑖𝑛𝑒𝑉𝑎𝑖4)𝑁
𝑖 ,

where Notch is a notch position, Speed is speed of the loco-

motive, CM1 is current on the first working motor, LineV is

line voltage.

Coefficients of polinomial interpolation are stored in ECI file,

which has the following format:

𝑎11 𝑎12 𝑎13 𝑎14 𝐴1

𝑎21 𝑎22 𝑎23 𝑎24 𝐴2

.

𝑎𝑁1 𝑎𝑁2 𝑎𝑁3 𝑎𝑁4 𝐴𝑁

"entrancecurrentfile" parameter of TMC file shows to

UMComSolver where shall it get polinomial interpolation

coefficients for calculation of entrance current.

SetTransmissionMode HRESULT _stdcall SetTransmissionMode([in] long Value);

Traction motors are connected in a circuit with the main gen-

erator/alternator. The circuit may be series, series/parallel or

parallel, but series/parallel and parallel circuits are more

common. Each type of circuit has different voltage and cur-

rent characteristics.

Input:

0 corresponds to MANUAL transmission

1 corresponds to AUTOMATIC transmission

Returns S_False is no transmission mode is available.

GetTransmissionIndex int _stdcall GetTransmissionIndex(void);

Returns current transmission index. Index starts with 0.

SetTransmissionIndexUp int _stdcall SetTransmissionIndexUp(void);

Increases transmission index.

Universal Mechanism 9 20-66 Chapter 20. UM COM Interfaces

Output: resulting transmission index. Transmission index will

not be changed if no upper transmission positions.

SetTransmissionIndexDown int _stdcall SetTransmissionIndexDown(void);

Decreases transmission index.

Output: resulting transmission index. Transmission index will

not be changed if no lower transmission positions.

GetTransmissionLosses double _stdcall GetTransmissionLosses;

Output: returns transmission losses of a diesel loco traction

motors equipped by hydro-turbine transmission, %

GetMotorLosses double _stdcall GetMotorLosses ([in] long Index);

Output: transmission losses of a traction motor number Index,

%

GetDieselPower double _stdcall GetDieselPower;

Output: returns indicated diesel power percentage, 100%

Universal Mechanism 9 20-67 Chapter 20. UM COM Interfaces

20.6.7. IUMCom3DTrainVehicle interface

IUMCom3DtrainVehicle is a 3D model of railway vehicle. The interface is used for getting

position, acceleration of a car body of 3D vehicle, wheelset rotation data.

Interface: IUMCom3DtrainVehicle

Hierarchy: Iunknown – IUMComTrainVehicle – IUMCom3DtrainVehicle

Methods Description

GetCarBodyAcceleration HRESULT _stdcall GetCarBodyAcceleration([in] int SC_ID,

[in] double X, [in] double Y, [in] double Z,

[out] double * AX, [out] double * AY, [out] double * AZ);

Returns accelerations (m/s2) along to X, Y and Z (AX, AY

and AZ parameters correspondingly) of the point with coordi-

nates specified by X, Y and Z parameters.

SC_ID specifies system of coordinate to resolve accelerations:

0 – inertial system of coordinates, 1 – car-body-fixed system

of coordinates, 2 – way-fixed system of coordinates, 3– modi-

fied way-fixed system of coordinates.

GetCarBodyPosition HRESULT _stdcall GetCarBodyPosition([in] int SC_ID, [out]

double * X, [out] double * Y, [out] double * Z, [out] double *

a11, [out] double * a12, [out] double * a13, [out] double *

a21, [out] double * a22, [out] double * a23, [out] double *

a31, [out] double * a32, [out] double * a33);

Returns position of origin (m) and components of rotation co-

sine matrix of CarBody coordinate system relative to the spec-

ified SC:

SC_ID =0 – SC0,

SC_ID =2 – relative to way-fixed system of coordinates,

SC_ID =3 – relative to modified way-fixed system of coordi-

nates.

Output: X, Y, Z : coordinates of CarBody SC in specified SC;

a11, a12, a13, a21, a22, a23, a31, a32, a33 – components of

rotation cosine matrix.

Example (SC_ID = 0):

G1 = A10*G0 ,

where

𝐴10 = [
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

],

G0 – projection of vector G to SC0,

G1 – projection of vector G to SC1.

GetCarBodyHPR HRESULT _stdcall GetCarBodyHPR([in] int SC_ID, [out]

double * h, [out] double * p, [out] double * r);

Universal Mechanism 9 20-68 Chapter 20. UM COM Interfaces

Output: Orientation of car body (degree) relative to the speci-

fied SC:

SC_ID =0 – SC0,

SC_ID =2 – relative to way-fixed system of coordinates,

SC_ID =3 – relative to modified way-fixed system of coordi-

nates.

h : heading (yaw) (Z axis)

p : pitch (Y axis)

r : roll (X axis)

GetCarBodyAngVelocity HRESULT _stdcall GetCarBodyAngVel([in] int SC_ID,

[in] double OmX, [in] double OmY, [in] double OmZ);

Output: Angular velocity of car body (rad/s). SC_ID specifies

system of coordinate to resolve accelerations: 0 – inertial sys-

tem of coordinates, 1 – car-body-fixed system of coordinates,

2 – way-fixed system of coordinates.

GetWheelsetCount long _stdcall GetWheelsetCount(void);

Intput: number of wheelsets in current rail vehicle

GetWheelsetSlipping double _stdcall GetWheelsetSlipping([in] long Index);

Input: Index = 0.. GetWheelsetCount-1 – index of wheelset

Output: angular velocity of wheelset slipping, rad/s

(OM-V/R), where OM – angular spinning velocity, V – speed,

R – radius

Returns zero if Index is out of range.

Note. Wheel slipping can change from minus infinity to plus

infinity

GetWheelsetSlippingPercentage double _stdcall GetWheelsetSlippingPercentage([in] long In-

dex);

Input: Index = 0.. GetWheelsetCount-1 – index of wheelset

Output: percent of wheelset slipping, %

(OM-V/R)/(V/R)*100, where OM – angular spinning velocity,

V – speed, R – radius

Returns zero if Index is out of range.

Note. Wheel slipping can change from minus infinity to plus

infinity

GetWheelsetSpinVelocity double _stdcall GetWheelsetSpinVelocity([in] long Index);

Input: Index = 0.. GetWheelsetCount-1 – index of wheelset

Returns zero if Index is out of range.

Output: angular velocity of wheelset, rad/s

GetWheelNormalForce double _stdcall GetWheelNormalForce([in] int WheelSet-

Index, [in] int WheelIndex);

Output: normal force at the first contact point of wheel with

rail, Newton

Input: WheelSetIndex = 0.. GetWheelsetCount-1 – index of

Universal Mechanism 9 20-69 Chapter 20. UM COM Interfaces

wheelset

(WheelIndex = 1) for left wheel, (WheelIndex = 2) for right

wheel.

Output: angular velocity of wheelset, rad/s

Returns zero if WheelSetIndex or WheelIndex are out of

range.

An example of overturning control procedure:

function IsOverturning: Boolean;

var i: integer;

 ComTrain: IUMComTrain;

 l3DVehicle: IUMCom3DtrainVehicle;

 _H, _P, _R, lSumNLeft,lSumNRight: double;

Begin

 ComTrain.GetVehicle3DByIndex(0, P);

 l3DVehicle:= IUNknown(P) as IUMCom3DtrainVehicle;

 l3DVehicle.GetCarBodyHPR(_H,_P,_R);

 Result:= (_R>8); // Check for inadmissible inclination of CarBody

 if not Result then begin

 lSumNLeft:= 0; lSumNRight:= 0;

 for i:= 0 to l3DVehicle.GetWheelsetCount - 1 do begin

 lSumNLeft:= lSumNLeft + l3DVehicle.GetWheelNormalForce(i,1);

 lSumNRight:= lSumNRight + l3DVehicle.GetWheelNormalForce(i,2);

 end;

 Result:= ((lSumNLeft=0) or (lSumNRight=0));

 end;

end;

Universal Mechanism 9 20-70 Chapter 20. UM COM Interfaces

20.6.8. IRailRoad interface

IRailRoad is an interface for work with the rail road model. The interface is used for loading

and checking of railroad XML file, setting of initial position of train on the railroad, irregularity

type, train direction and states of switches.

IRailRoad interface supports two types of files: (1) text XML files and (2) binary RRD files.

Binary RRD file format helps to decrease reading and parsing time.

Note. Initial position is a desired position of the front point of the train at the moment of

test start. In effect simulation of train motion starts not from the initial position,

but from the position evaluated from it with a glance of parameters of the train.

This stage of motion, so-called “start mode stage”, is necessary to realize moving

in the railroad geometry and track irregularities.

IRailRoad interface enables organization of virtual train motion, Sect. 20.6.2. "IVirtualTrain

interface", p. 20-31.

Interface: IRailRoad

Hierarchy: IUnknown – IRailRoad

Methods Description

ReadFromFile HRESULT _stdcall ReadFromFile([in]LPSTR FileName, [in]

VARIANT_BOOL CanRepair);

Loads and checks railroad description from specified *.xml or

*.rrd file. Tries to repair detected errors if CanRepair is true. Re-

turns S_OK in successful termination, S_FALSE in case of non-

successful termination.

GetXMLFilePath LPSTR _stdcall GetXMLFilePath(void);

Returns path to the loaded railroad *.xml file.

GetElementCount int _stdcall GetElementCount (void);

Returns count of railroad elements.

GetRoadCount int _stdcall GetRoadCount (void);

Returns count of roads.

GetSwitchCount int _stdcall GetSwitchCount (void);

Returns count of switches.

InitTrack HRESULT _stdcall InitTrack([in] int InitialElementID, [in] int

InitialSectionID, [in] double InitialPosition, [in] int Irregulari-

tyType, [in] VARIANT_BOOL PositiveDirection, [in] double

ScaleFactorY, [in] double ScaleFactorZ);

Setting of initial position, track irregularities type and train direc-

tion before simulation start. Returns S_OK in successful termina-

tion, S_FALSE in case of non-successful termination. If InitialPo-

sition is greater than element section length or less than zero the

result is S_FALSE.

Input:

Universal Mechanism 9 20-71 Chapter 20. UM COM Interfaces

InitialElementID is the global ID of initial element;

InitialSectionID is ID of active section of initial element;

InitialPosition is initial local position on active section of initial

element in meters;

IrregularityType is the index of track irregularity type (0 – gener-

ated from UIC spectra for bad maintenance track, 1 – generated

from UIC spectra for good maintenance track, 2 – special track, 3

– even track; 4 – loaded from way files, see ReadIrregulari-

tyFromFile method);

PositiveDirection is flag of train direction;

ScaleFactorY is horizontal irregularity scale factor;

ScaleFactorZ is vertical irregularity scale factor.

GetStartPosition HRESULT _stdcall GetStartPosition ([out] int * StartElementID,

[out] int * StartSectionID, [out] double* StartModeTracklength);

Returns S_OK in case of successful start position evaluation,

S_FALSE in other case of non-successful evaluation.

Output:

StartElementID is global ID of element from which train moving

starts;

StartSectionID is ID of active section of start element;

StartModeTrackLength is length of track from start position to the

initial one.

GetStartMode VARIANT_BOOL _stdcall GetStartMode(void);

Returns start mode state during simulation: true – train moving to

the initial position, false – initial position is arrived, test is started.

SetSwitchState HRESULT _stdcall SetSwitchState([in] int SwitchID, [in] int

SwitchFlag);

Changes the state of switch if it is not under train. Returns S_OK

if the state is set, S_FALSE if switch is not found or its state can-

not be changed at the moment.

Intput:

SwitchID is global ID of the switch,

SwitchFlag is flag of desired switch state (0 – switch is set, 1 –

switch is not set).

GetSwitchState long _stdcall GetSwitchState ([in] int SwitchID);

Input: SwitchID – global ID of switch

Output: Returns flag of current state of switch (0 – switch is set, 1

– switch is not set, (-1) – switch is not described).

GetActiveTrackElementList LPSTR _stdcall GetActiveTrackElementList([in] int StartElemen-

tID, [in] int StartSectionID, [in] VARIANT_BOOL ForwardDi-

rection);

Returns the string with sequence of '[ElementID; SectionID]' rec-

ords from the start position up to the end of railroad track.

Universal Mechanism 9 20-72 Chapter 20. UM COM Interfaces

SetDrawingMode HRESULT _stdcall SetDrawingMode([in] int DrawingModeIn-

dex);

Changes drawing mode of railroad in animation windows, see

Sect. 20.2. "IUMObject interface", p. 20-5.

Input: DrawingModeIndex = 0 – railroad image is generated, all

railroad elements are displayed at once;

DrawingModeIndex = 1 – railroad image is generated, railroad

element becomes visible when first point of train reaches;

DrawingModeIndex = 2 or any other value – railroad image is not

generated

SetScaleFactors HRESULT _stdcall SetScaleFactors([in] double ScaleFactorY,

[in] double ScaleFactorZ);

Changes scale factors of horizontal and vertical track irregulari-

ties.

Input:

ScaleFactorY is horizontal irregularity scale factor;

ScaleFactorZ is vertical irregularity scale factor.

These parameters are multipliers (1.0 value means that real scale

of generated or read from file irregularities will be used).

ReadIrregularityFromFile HRESULT _stdcall ReadIrregularityFromFile([in] LPSTR File-

Name, [in] int AType);

Reads track irregularity from preliminary created track irregularity

(*.way) file. Returns S_OK if file is read, S_FALSE in other case.

Input: FileName is path to the (*.way) file;

AType is flag of rail and axis:

0 – vertical irregularities of left rail ;

1 – vertical irregularities of right rail ;

2 – horizontal irregularities of left rail;

3 – horizontal irregularities of right rail;

HideProgressBars HRESULT _stdcall HideProgressBars ([in] VARIANT_BOOL

OnHide);

If OnHide = true then progress bars of railroad reading and irregu-

larity generation are not displayed. OnHide = false by default.

GetElementDataByIndex HRESULT _stdcall GetElementDataByIndex([in] int aIndex,

[out] int* aGlobalID, [out] int* aElementTypeIndex, [out] int*

aSwitchTypeIndex);

Detects parameters of railroad element by its serial index in the

railroad description. Returns S_OK if aIndex value is in the [0,

GetElementCount-1] range, S_FALSE in other case.

Outputs:

aGlobalID is global ID of the railroad element

aElementTypeIndex is flag of the railroad element type:

0 – Road;

Universal Mechanism 9 20-73 Chapter 20. UM COM Interfaces

1 – Switch;

aSwitchTypeIndex is flag of the switch type:

-1 – the element is Road;

0 – B-Switch;

1 – C-Switch;

2 – S-Switch;

3 – V-Switch.

RefineRailroadFile HRESULT _stdcall RefineRailroadFile ([in]LPSTR aSource, [in]

LPSTR aDest);

Loads railroad description from specified by aSource *.xml or

*.rrd file, verify and automatically correct data, and save the re-

fined description to aDest *.xml or *.rrd file. Returns S_OK in

successful termination, S_FALSE in case of non-successful ter-

mination.

This function can be used for XML to RRD and RRD to XML file

format convertions.

SetDetailedLog HRESULT _stdcall SetDetailedLog([in] VARIANT_BOOL

aDetailedLog);

Effects on content of log file during working ReadFromFile and

RefineRailroadFile. Set aDetailedLog to TRUE to generate de-

tailed log file. Set aDetailedLog to FALSE to generate brief log

file. By deault brief log file is generated to provide minimal CPU

efforts for reading railroad file.

Interfaces for virtual train models, Sect. 20.6.2. "IVirtualTrain interface", p. 20-31.

AddVirtualTrain HRESULT _stdcall AddVirtualTrain([out] void* Train);

Adds new virtual train to a model. Returns the interface of the vir-

tual train.

GetVirtualTrainCount int _stdcall GetVirtualTrainCount(void);

Returns the count of created virtual trains.

GetVirtualTrainByIndex HRESULT _stdcall GetVirtualTrainByIndex ([in] int Index,

[out] void* Train);

Returns the virtual train interface by train index. First item has

index 1.

DeleteVirtualTrainByIndex HRESULT _stdcall DeleteVirtualTrain([in] int Index);

Deletes the virtual train by index. First item has index 1.

SetUseRRSpecificIrrScale HRESULT _stdcall SetUseRRSpecificIrrScale([in] VARI-

ANT_BOOL aUseRRSpecificIrrScale);

Enables track irregularities scaling by IrrScaleZ, IrrScaleY factors

defined in the railroad description file.

SetRRElementIrrScales HRESULT _stdcall SetRRElementIrrScales([in] int aElementID,

[in] double aIrrScaleZ, [in] double aIrrScaleY);

Set railroad element specific track irregularitiy scales.

Note: Use SetUseRRSpecificIrrScale method to enable the rail-

Universal Mechanism 9 20-74 Chapter 20. UM COM Interfaces

road specific scaling.

Warning: Changing of the irregularities scales of the element the

3D vehcile is currently placed on during simulation can result in

dramatic dynamic effects.

Universal Mechanism 9 20-75 Chapter 20. UM COM Interfaces

20.6.9. Data file description

Figure 20.1. Brake system diagram

20.6.9.1. *.pf file description

*.pf-files describe parameters of brake's leverage mechanism in between a brake cylinder and

brake pads, see figure 20.2.

Figure 20.2. Typical brake leverage mechanism for a freight car

Normal force between a brake pad and a wheel (𝑁) is calculated according to the following

formula:

N=CeffPSRLeff -Fspr, where

𝐶𝑒𝑓𝑓 is the dimensionless efficiency factor for the brake cylinder (see cylindereff parameter),

Universal Mechanism 9 20-76 Chapter 20. UM COM Interfaces

𝑃 is the current pressure in the brake cylinder (Pa),

𝑆 is the piston square, see pistonsquare parameter (m
2
),

𝑅 is the dimensionless leverage ratio between a brake cylinder and a brake pad, see gearratio

parameter,

𝐿𝑒𝑓𝑓 is the dimensionless efficiency factor for the leverage system, see levereff parameter,

𝐹𝑠𝑝𝑟 is the spring force that releases brake pads when there is no pressure in a brake cylinder,

see springforce parameter (N).

Potential (maximum) braking (friction) force for a contact pair (𝐹𝑓𝑟) (brake shoe/disk vs.

wheel) is calculated according to the following formula:

Ffr=fN
r

R
, where

𝑓 is the current dimensionless friction coefficient,

𝑁 is the normal force in the contact pair (N),

 is the ratio of the arm of braking force (r) to the wheel radius (R). It is applicable for disk

brakes only. It is 1 for shoe brakes, see radiusratio field in *.pf-file.

Potential (maximum) braking (friction) force for a whole vehicle (𝐹𝑐𝑎𝑟) is calculated accord-

ing to the following formula:

𝐹𝑐𝑎𝑟 = 𝑛𝐹𝑓𝑟 , where

𝑛 is the number of contact pairs per vehicle, see pairnumber parameter,

𝐹𝑓𝑟 is the friction force per contact pair.

Field Description

forcemode Type: integer;

It is reserved for future use. This parameter should be set to 1.

pairnumber Type: integer;

Count of contact pairs per vehicle

radiusratio Ratio (r/R) of the arm of braking force (r) to the wheel radius (R).

It is applicable for disk brakes only. It is 1 for shoe brakes. See

Figure 20.3 for details.

cylindernumber Type: integer;

Count of brake cylinders per vehicle.

pistonsquare (S) Square of a brake cylinder piston (m
2
)

cylindereff (𝐶𝑒𝑓𝑓) Efficiency factor for the brake cylinder

gearratio Leverage ratio between a brake cylinder and a brake pad

levereff (𝐿𝑒𝑓𝑓) Efficiency factor for the leverage system

springforce (𝐹𝑠𝑝𝑟) Force in the prestressed spring that releases brake pads (N)

Universal Mechanism 9 20-77 Chapter 20. UM COM Interfaces

Figure 20.3. On braking force radius ratio (r/R) definition

20.6.9.2. Cars/*/input.dat file description

Identificator Description

AxleOver

BodyLength

BodyZ

BogieBase

CouplingBase

CouplingHeight

CouplingLength

CouplingOver

CouplingPoint

Mass

resistance_scale

VehicleBase

VehicleHeight

VehicleWidth

vertical_mass_center_position

WheelBase

WheelRadius

wheelset_count

Wheel

Disk brake

rotor Brake pad

Brake force

R

r

Universal Mechanism 9 20-78 Chapter 20. UM COM Interfaces

20.7. Parameters of railway vehicles

20.7.1. Diesel model

Diesel parameters are described in *.dm (diesel model) files that are located in

'..\Train\Diesel' folder. Typical *.dm file includes the following fields:

name="Diesel model for DE33000";

comment="Diesel model for DE33000";

idlefuelconsumption=0.189;

factor=1.0;

FuelConsumptionCurves=DE33000Fuel.crv;

RPMCurve=DE33000RPM.crv;

IdleFuelConsumption sets the fuel consumption for the idle mode of the engine in kg/min.

Field factor sets the multiplication factor to easily adjust some nominal fuel consumption

curves for better agreement with field tests when available. Factor value does not effect on

idling fuel consumption that should be adjusted independently.

FuelConsumptionCurves refers to a file where fuel consumption diagram(s) are described.

This file should be located in the same folder. This file describes the fuel consumption diagram

as a dependence between current vehicle speed in km/h and fuel consumption in kg/min for sev-

eral given throttle positions or just for the only maximal throttle position as shown in the figure

below.

Please note that the count of curves that describe fuel consumption should be (1) equal to

count of throttle curves then fuel consumption is calculated according to the given throttle posi-

tion or (2) should be 1 then the only curve describes the maximal fuel consumption and interme-

diate values are calculated proportionally.

Universal Mechanism 9 20-79 Chapter 20. UM COM Interfaces

RPMCurve refers to a file where diesel RPM diagram versus throttle position is described. This

file should be located in the same folder. This file describes the diesel RPM diagram as a de-

pendence between throttle position and diesel RPM (rotations per minute) as shown in the figure

below. Zero throttle position on the diagram refers to idle mode RPM; negative values – to dy-

namic brake positions.

Universal Mechanism 9 20-80 Chapter 20. UM COM Interfaces

20.8. IUMEventHandler interface

Interface: IUMEventHandler

Hierarchy: IUnknown – IRailRoad

IUMEventHandler is an interface that is intended to handle the errors that arise during the

simulation process. Object of this interface should be described within the client application and

assigned with the UM COM server via the following method of the IUMObject interface:

 HRESULT _stdcall SetEventHandler([in] IInpObjectEventHandler* EventHandler)

Methods Description

OnError HRESULT _stdcall OnError([in] int ErrorCode, [in] int Tag, [in]

LPSTR ErrorMessage);

This method is called by IUMObject interface if the event handler

is assigned. Please check the ErrorCode and Tag in the table be-

low.

Error codes of OnError method:

Error

codes

Tag Description

0 0 Empty

1 <Switch Global-

ID>

Railroad model message:

'Error! Switch [<Switch GlobalID>] was corrupted!'

Message is generated if train or virtual train passes switch point

of the switch element in direction not allowed by current state

of the switch.

Example: Admissible/Inadmissible paths throw the activated B-

Switch

2 <Switch Global-

ID>

Railroad model message:

'Error! Cannot change state of switch [<Switch GlobalID>].

Switch in under train [<Train Caption>]!'

B-switch

Activated

Admissible paths

Inadmissible path

Switch point

Universal Mechanism 9 20-81 Chapter 20. UM COM Interfaces

20.9. Interfaces for simulator of road vehicles

General information about loading a UM car model, preparing, starting and finishing simula-

tion process and so on can be found Sect. 20.2. "IUMObject interface", p. 20-5. Here we consid-

er an interface for control of a vehicle based on simulator output data as well as for getting vehi-

cle specific kinematic and dynamic performances.

20.9.1. IComCar interface

Interface: IComCar

Hierarchy: Iunknown – IcomCar

Methods Description

SteeringAngle HRESULT _stdcall SteeringAngle([in] double Value);

Input: value of steering wheel rotation in degrees.

ThrottlePosition HRESULT _stdcall ThrottlePosition([in] double Value);

Value[0, 100%]

Input: value of the engine throttle position in percent base on

the accelerator pedal position.

ClutchPedalPosition HRESULT _stdcall ClutchPedalPosition([in] double Value)

Value[0, 1]

Input: value of the clutch pedal position (0- no pressure on the

pedal, 1 – fully pressed pedal).

GearPosition HRESULT _stdcall GearPosition([in] int Value);

Input: value of the gear position.

-1 – reverse

0 – neutral

1,2.. – I, II … gears for forward movement

BrakePedalPosition HRESULT _stdcall BrakePedalPosition([in] double Value);

Value>0

Sets applied brake pedal force in N

HandBrakePosition HRESULT _stdcall HandBrakePosition([in] double Value);

Value[0, 1]

Input: value of the hand brake lever position (0 – no braking).

ABSState int _stdcall ABSState(void);

Output:

-1: ABS is not presented

0: ABS is not active

1: ABS operates

VehicleSpeed HRESULT _stdcall VehicleSpeed([out] double * Value);

Output: vehicle speed in km/h

EngineRPM HRESULT _stdcall EngineRPM([out] double * Value);

Output: ICE shaft angular velocity in rpm

Universal Mechanism 9 20-82 Chapter 20. UM COM Interfaces

GetCarBodyPosition HRESULT _stdcall GetCarBodyPosition([out] double * X,

[out] double * Y, [out] double * Z, [out] double * Yaw, [out]

double * Pitch, [out] double * Roll);

Output

Cartesian coordinates of the car body center of gravity in me-

ters: X(longitudinal), Y(lateral, left positive), Z(vertical, up-

ward positive)

Orientation angles in degrees (yaw, pitch, roll)

GetWheelPosition HRESULT _stdcall GetWheelPosition([in] int Index, [out]

double * X, [out] double * Y, [out] double * Z, [out] double *

AxisX, [out] double * AxisY, [out] double * AxisZ);

Input: index of wheel (see figure)

Index=

1 (front left)

2 (front right)

3 (rear left)

4 (rear right)

Output: wheel position and orientation

Cartesian coordinates of the car body center of wheel in me-

ters: X(longitudinal), Y(lateral, left positive), Z(vertical, up-

ward positive)

Components of unit vector along the wheel rotation axis in

SC0 (left positive, see figure)

AxisX, AxisY, AxisZ

GetSteeringState int _stdcall GetSteeringState(void);

Output: 1 – driver controls steering wheel angle;

 0 – steering wheel is free.

SetSteeringState HRESULT _stdcall SetSteeringState([in] int AState);

Input: 1 – driver controls steering wheel angle;

 0 – steering wheel is free.

GetSteeringAngle HRESULT _stdcall GetSteeringAngle([out] double* Value);

Output: Value – angle of steering wheel rotation in degrees. If

steering state corresponds to the driver control, the result is

equal to the value specified by the SteeringAngle method. If

the steering wheel is free, the output value is equal to the dy-

namically computed angle.

SetRoadGeometry HRESULT _stdcall SetRoadGeometry([in] int Iwheel, [in]

double Z, [in] double NormalX, [in] double NormalY, [in]

double NormalZ);

Input: Iwheel – index of wheel;

 Z (m) – verticut road coordinate under the wheel;

 NormalX, NormalY, NormalZ – normal to the road

surface under the wheel in SC0.

Universal Mechanism 9 20-83 Chapter 20. UM COM Interfaces

GetSteeringWheelTorque HRESULT _stdcall GetSteeringWheelTorque([out] double*

Value);

Output: Value (Nm) – steering wheel torque

SetWindData HRESULT _stdcall SetWindData([in] double Speed, [in]

double Angle);

Input: Speed (m/s) – wind speed;

 Angle (degrees) – wind direction angle relative to SC0

(see figure for positive direction), Sect. 20.9.3. "Angle of wind

direction", p. 20-90.

GetTravelledDistance HRESULT _stdcall GetTravelledDistance([out] double* Val-

ue);

Output: Value (v) – travelled distance

GetChassisAcceleration HRESULT _stdcall GetChassisAcceleration([in] int SCType,

[out] double* AX, [out] double* AY, [out] double* AZ, [out]

double* EX, [out] double* EY, [out] double* EZ);

Input: SCType – corrdinate system in which accelerations are

computed:

 0 – SC0;

 1 – chassis-fixed SC

Output: AX, AY, AX – components of acceleration of origin

of chassis-fixed SC (m/s) ;

 EX, EY, EX – components of angular acceleration of

chassis-fixed SC (rad/s^2);

SetRollingFriction HRESULT _stdcall SetRollingFriction([in] double f0, [in]

double k1, [in] double k2);

Input: f0, k1, k2 – parameters for computation of coefficient

of rolling friction

GetWheelVelocities HRESULT _stdcall GetWheelVelocities([in] int Index, [out]

double* VX, [out] double* VY, [out] double* VZ, [out] dou-

ble* Omega);

Input: Index – Index of wheel

Output: VX, VY,VZ – components of velocity of the wheel

center in SC0 (m/s);

 Omega – rolling angular vrlocity of wheel (rad/s)/

GetTireUnloadedRadius HRESULT _stdcall GetTireUnloadedRadius([in] int Index,

[out] double* Radius);

Input: Index – index of wheel;

Output: Radius – radius of undeformed wheel (m)

GetTireContactData HRESULT _stdcall GetTireContactData([in] int Index, [out]

double* Fx, [out] double* Fy, [out] double* Fz, [out] double*

Mx, [out] double* My, [out] double* Mz, [out] double*

Universal Mechanism 9 20-84 Chapter 20. UM COM Interfaces

SlipX, [out] double* SlipY);

Input: Index – Index of wheel

Output: Fx (longitudinal tire force: traction, braking), Fy (tire

lateral force), Fz (tire normal force), Mx (torque about longi-

tudinal axis); My (rolling resistance torque), Mz (aligning

torque). Forces are measured in N, toques in Nm.

SetTerrainCurveCount HRESULT _stdcall SetTerrainCurveCount([in] int Index, [in]

int NPoints);

Input: Index – index of wheel;

 NPoints – number of points in polygon specifying the

terrain curve

SetTerrainCurvePoint HRESULT _stdcall SetTerrainCurvePoint([in] int Wheel-

Index, [in] double X, [in] double Z, [in] double NormalX, [in]

double NormalY, [in] double NormalZ);

Input: Index – index of wheel;

 X, Y, Z – coordinates of a terrain curve point in SC of

wheel (m);

 NormalX, NormalY, NormalZ –components of normal

to the terrain curve section between the current and the previ-

ous point in polygon,

see Sect. 20.9.4. "Terrain curve", p. 20-91.

SetInitialSpeed HRESULT _stdcall SetInitialSpeed([in] double Value);

Input: Value – initial speed of vehicle (m/s);

SetTireUnloadedRadius HRESULT _stdcall SetTireUnloadedRadius([in] int Index,

[in] double Value);

Input: Index – index of wheel; if Index=0 the value is as-

signed to all of the wheels;

 Value – radius of undeformed wheel (m)

SetTireSectionWidth HRESULT _stdcall SetTireSectionWidth([in] int Index, [in]

double Value);

Input: Index – index of wheel; if Index=0 the value is as-

signed to all of the wheels;

 Value – tire section width (m)

SetTireContactType HRESULT _stdcall SetTireContactType([in] int AType);

Input: AType – type of tire/terrain contact model:

 0 – single point contact; the terrain is set by SetRo-

adGeometry method

 1 – multiple contact; the terrain is set by a terrain curve

TireBlowOut HRESULT _stdcall TireBlowOut([in] int Index, [in] double

RimRadius, [in] double DragCoefficient);

Input: Index – index of wheel;

 RimRadius- radius of wheel rim (m);

Universal Mechanism 9 20-85 Chapter 20. UM COM Interfaces

 DragCoefficient – coefficient of drag of the blowout

tire 0.3-0.4.

See Sect. 20.9.5. "Tire blowout", p. 20-94.

SetFrictionCoefficient HRESULT _stdcall SetFrictionCoefficient([in] double Peak-

Value, [in] double SlidingValue);

Adhesion coefficient for all of the tires.

Input: PeakValue – the maximal value of coefficient;

 Sliding – the minimal value of coefficient by pure slid-

ing.

See Sect. 20.9.6. "Road coefficients of friction", p. 20-94.

SetTireRatedPressure HRESULT _stdcall SetTireRatedPressure([in] int Index, [in]

double Value);

Sets tire rated inflation pressure.

Input: Input: Index – index of wheel; if Index=0 the values

are assigned to all of the wheels;

 Value – the tire inflation pressure (kPa).

SetTireVericalStiffness HRESULT _stdcall SetTireVerticalStiffness([in] int Index,

[in] double StiffnessZ, [in] double DampingZ, [in] double

Pressure);

Sets tire vertical stiffness and damping for the rated inflation

pressure and load.

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 StiffnessZ– tire vertical stiffness, N/m;

 DampingZ– tire vertical damping constant, Ns/m.

SetTireCorneringStiffness HRESULT _stdcall SetTireCorneringStiffness ([in] int Index,

[in] double Value);

Sets tire cornering stiffness for the rated inflation pressure and

load.

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value– tire cornering stiffness, N/rad.

SetTireLongitudinalStiffness HRESULT _stdcall SetTireLongitudinalStiffness([in] int In-

dex, [in] double Value);

Sets tire longitudinal stiffness for the rated inflation pressure

and load.

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value– tire longitudinal stiffness, N.

SetAutoEvaluationTireStiffness HRESULT _stdcall SetAutoEvaluationTireStiffness([in] int

Vertical, [in] int Cornering, [in] int Longitudinal);

Specifies automatic evaluation of tire stiffness properties ac-

cording to simplifies analytic expressions. Set 1 to the corre-

Universal Mechanism 9 20-86 Chapter 20. UM COM Interfaces

sponding direction to specify automatic evaluation.

Input : Vertical – vertical tire stiffness;

 Cornering – cornering stiffness

 Longitudinal – longitudinal stiffness.

SetCorneringCoefficient HRESULT _stdcall SetCorneringCoefficient([in] int Index,

[in] double Value);

Sets tire cornering coefficient for the rated inflation pressure

and load

used if Cornering=1 in procedure SetAutoEvaluation-

TireStiffness

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value (0.07-0.2)– tire cornering coefficient, unitless.

SetTireDampingRatio HRESULT _stdcall SetTireDampingRatio([in] int Index, [in]

double Value);

Specifies the vertical tire damping properties by damping ra-

tio;

Is used if Vertical=1 in procedure SetAutoEvaluation-

TireStiffness

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value (0.3-0.75) – damping ratio.

SetTireRatedPressure HRESULT _stdcall SetTireRatedPressure([in] int Index, [in]

double Value);

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Pressure– the rated value of pressure (kPa).

SetTireRatedLoad HRESULT _stdcall SetTireRatedLoad([in] int Index, [in]

double Value);

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value – the rated tire load (N);

EvaluationTireRatedStiffness HRESULT _stdcall EvaluationTireRatedStiffness(void);

The method computes stiffness parameters of tires specified

by the SetAutoEvaluationTireStiffness procedure.

SetTireCurrentPressure HRESULT _stdcall SetTireCurrentPressure([in] int Index, [in]

double Pressure);

Input: Index – index of wheel; if Index=0 the values are as-

signed to all of the wheels;

 Value– the rated value of pressure (kPa).

DoEquilibriumTest HRESULT _stdcall DoEquilibriumTest([in] double TMax,

[in] double StopEnergy);

The method computes the equilibrium position of vehicle tak-

Universal Mechanism 9 20-87 Chapter 20. UM COM Interfaces

ing into account the terrain geometry.

Input : TMax>=20s the – maximal duration of simulation

while computation the equilibrium

 StopEnergy > =1.-e-5 (J) – computation stops when the

kinetic energy of the vehicle is less than the specified value/

See Sect. 20.9.9. "Computation of vehicle equilibrium", p. 20-

98.

SetSteadyTestType

not used

HRESULT _stdcall SetSteadyTestType(void);

The method sets the mode of simulation for computation of

the car equilibrium position depending of occupation state and

the current macro geometry data. Use TestFinish function to

get the information success of the equilibrium computation

process.

TestFinished

not used

HRESULT _stdcall TestFinished(void);

The function specifies the end of equilibrium computation in

The procedure sets the simulator mode. The equilibrium posi-

tion is recommended to be computed before start of the simu-

lator.

SetSimulatorTestType

not used

HRESULT _stdcall SetSimulatorTestType(void);

The method sets the simulator mode. The equilibrium position

is recommended to be computed before start of the simulator.

LoadRoadRoughness HRESULT _stdcall LoadRoadRoughness([in] LPSTR File-

Left, [in] LPSTR FileRight);

The method loads *.irr files with the left and right road

roughness data.

Input : FileLeft, FileRight – full paths to *.irr files with

roughness functions. If the files are located in the vehicle

model directory, FileLeft, FileRight may contain file names

only (without direct path)

UseRoadRoughness HRESULT _stdcall UseRoadRoughness([in] int Value);

The methods sets usage of road roughness if Value=1. If Val-

ue=0, the road is ideal, and no roughness is taken into ac-

count.

SetTerrainRoughnessFactor HRESULT _stdcall SetTerrainRoughnessFactor([in] double

Factor, [in] double TransitionLength);

The method specifies the terrain roughness level.

Input: Factor– factor for increase/decrease the standard

roughness level;

 TransitionLength – distance of transition to the new

roughness, m.

See Sect. 20.9.7. "Rolling resistance of tires", p. 20-95.

CreateCollisionEvent HRESULT int _stdcall CreateCollisionEvent([in] double

Stiffness, [in] double DampingRatio, [in] double cFriction);

Universal Mechanism 9 20-88 Chapter 20. UM COM Interfaces

The method creates a collision event between two bodies.

One-point contact is allowed for an event. To handle multiple

contacts, use different events.

Return value: handle identifying the event

Input: Stiffness (N/m) – stiffness constant of the contact

 DampingRatio – the damping ration of the collision

spring

 cFriction – coeffitiant of friction in contact

ReleaseCollisionEvent HRESULT _stdcall ReleaseCollisionEvent([in] int Handle);

Use the method to release the event after the collision when

the distance between the colliding bodies become big enough.

Input: handle of the event returned by the CreateCollision-

Event method

SetCollisionData RESULT _stdcall SetCollisionData([in] int Handle, [in] dou-

ble Delta, [in] double Xa, [in] double Ya, [in] double Za, [in]

double VXb, [in] double VYb, [in] double VZb, [in] double

NX, [in] double NY, [in] double NZ);

The method must be called in the StartComputeForces method

of the UM Event handler

Input: handle of the event returned by the CreateCollision-

Event method;

 Delta (m) – depth of penetration, negative if now pene-

tration take place

 Xa, Ya, Za (m) – coordinates of contact point in SC of

the car body;

 VXb, VYb, VZb (m/s) – velocti of contact point of ex-

ternal body in SC0;

 Nx, Ny, Nz – normal to the contact surface external to

the car body in SC0

GetCollisionForce HRESULT _stdcall GetCollisionForce([in] int Handle, [out]

double* FX, [out] double* FY, [out] double* FZ);

The method is used for getting the collision force applied to

the external body. The method must be called in the Sin-

gleStepEnd method of the UM Event handler

Input: handle of the event returned by the CreateCollision-

Event method;

 FX, FY, FZ (N) – components of contact force in SC0.

GetCarBodyCGPosition HRESULT _stdcall GetCarBodyCGPosition([in] double*

XCG, [in] double* YCG, [in] double* ZCG, [in] int SCRef);

Input: SCRef – reference frame 0: SC0, 1: local SC of car

body.

Universal Mechanism 9 20-89 Chapter 20. UM COM Interfaces

Output: XCG, YCG, ZCG (m) – coordinates of center of grav-

ity of car body in the specified SC.

GetChassisInterface HRESULT _stdcall GetChassisInterface([out] void* Car-

Body);

Access to the interface of the chassis (the car body)

Output: CarBody – IBody interface to the car body.

SetPebbleUnderTire HRESULT _stdcall SetPebbleUnderTire([in] int Index, [in]

double kp);

The method dynamically sets a pebble under the tire during

the simulation

Input: Index – index of wheel;

 kp – pebble size factor

See Sect. 20.9.13. "Run over the pebble", p. 20-104.

GetICEngine HRESULT _stdcall GetICEngine([out] void* AICEngine);

Access to the interface of internal combustion engine

Output: AICEngine – ICOMICEngine interface to the ICE,

see Sect. 20.10. "Interface for internal combustion engine

(ICE)", p. 20-105.

Most of the methods return S_OK in successful termination and S_FALSE in case of non-

successful termination.

20.9.2. Indexing of wheels

Indexing of wheels. Wheel rotation vector e.

Universal Mechanism 9 20-90 Chapter 20. UM COM Interfaces

20.9.3. Angle of wind direction

Positive angle of wind speed direction

Universal Mechanism 9 20-91 Chapter 20. UM COM Interfaces

20.9.4. Terrain curve

20.9.4.1. Definition of terrain curve

The curve is a polyline, which is specified by a sequence of points in SCWheel. This system

of coordinates coincides with the wheel plane, axis X is horizontal, axis Z is perpendicular to X.

If necessary, normals to terrain (to triangles of the terrain surface) must be specified for each

straight section of the polyline. The length of the curve must be approximately 2R.

To set the terrain curve application in tire-terrain contact evaluation, the SetTireCon-

tactType(1) method of ICComCar interface must be called before start the motion.

Terrain curve is sent to the solver in the OnStartComputeForces method of UMEv-

entHandler. In this method, the following procedure of IComCar interface must be called for

EACH of the wheels:

1. Call GetWheelPosition to obtain the position of the wheel.

2. Compute terrain curve for the givel wheel position.

3. Set number of points in the curve SetTerrainCurveCount(…)

4. Set the terrain curve points and normals in the loop by the method

SetTerrainCurvePoint

A normal vector corresponds to the perpendicular to the terrain triangle specified by the cur-

rent and previous points. The normal for the first point is ignored. The vectors are normalized in

COM server.

Points must be ordered by increasing abscissa value (X).

20.9.4.2. Computation of unit vectors along SCWheel axes

Let 𝑒𝑥, 𝑒𝑦, 𝑒𝑧 are the unit vectors along the x,y,z axes of SCWheel.

The components of the 𝑒𝑦 vector in SC0 can be obtained directly by the call of the

GetWheelPosition method. The following formulas specify other vectors:

SCWheel

X

Z

2R

Universal Mechanism 9 20-92 Chapter 20. UM COM Interfaces

.

),1,0,0(, 0

0

0

yxz

Z

Zy

Zy
x

eee

e
ee

ee
e









Here  denotes the cross product of vectors.

20.9.4.3. Computation of terrain curve by the triangular mesh

At first, consider conditions for intersection of the wheel plane with a line segment AB. Let

𝑅𝑤 be the radius vector to the wheel center in SC0 specified by the GetWheelPosition method;

𝑅𝐴, 𝑅𝐵 are the radius-vectors to the segment ends relative to SC0. Compute y coordinates of

points A,B in SCWheel as

),(

),(

wByB

wAyA

RRey

RRey





Here  denotes the scalar product of vectors.

Five variants take place:

1. 𝑦𝐴𝑦𝐵 > 0 – the plane does not intersect the segment;

2. 𝑦𝐴𝑦𝐵 < 0 – the plane intersect the segment in point C, which coordinates in SCWheel are

𝑥𝐶 = 𝑥𝐴 + (𝑥𝐵 − 𝑥𝐴)
𝑦𝐴

𝑦𝐴 − 𝑦𝐵

𝑧𝐶 = 𝑧𝐴 + (𝑧𝐵 − 𝑧𝐴)
𝑦𝐴

𝑦𝐴 − 𝑦𝐵

where

).(),(

),(),(

wBzBwBxB

wAzAwAxA

RRezRRex

RRezRRex





3. 𝑦𝐴 = 0, 𝑦𝐵 ≠ 0 – the plane intersect the segment in point A;

4. 𝑦𝐵 = 0, 𝑦𝐴 ≠ 0 – the plane intersect the segment in point B;

5. 𝑦𝐴 = 0, 𝑦𝐵 = 0 – the segment lies in the plane.

Now the condition of intersection of the wheel plane with a triangle ABC can be formulated:

o the plane intersects the triangle if the conditions 2) or 5) are fulfilled at least for one

of the segments (AB, BC, CA)

o if the case of condition 5, the corresponding segment is added to the terrain polyline

(Fig. a);

o if condition 2 is valid for two segments, the intersection points between the segments

and plane specify the segment, which is added to the polyline (Fig. b);

o if condition 2 and 3) or 4) take place, the segment is added, which connects the inter-

section points according to 2) with the opposite vertex of the triangle (Fig. c).

Universal Mechanism 9 20-93 Chapter 20. UM COM Interfaces

If the mesh topology is available (triangles for edges and vertices), this algorithm is applied

to the first found segment of the polyline, and other triangles can be found as neighbor ones. For

example, in case on Fig. b, two triangles having common edges with the first one should be con-

sidered.

In case of Fig. a, c, triangles for the vertex intersected by the curve are considered.

20.9.4.4. Simplified terrain curve

If the mesh topology is not available, the algorithm described in the previous section could be

time consuming. The simplified method for computation of the terrain curve can be used if a fast

computation of Z (vertical) coordinate of the terrain surface according to X,Y coordinates is

available. The method is good in case of smooth terrain surface and bad in non-smooth cases like

in figure below.

SCWheel

X

Z

Universal Mechanism 9 20-94 Chapter 20. UM COM Interfaces

Let a sequence of points 𝑃1, 𝑃2 … , 𝑃𝑛 lie on the wheel undeformed circle.

Coordinates of points are constant in SCWheel,

𝑃𝑖 = (𝑥𝑖, 0, 𝑧𝑖), 𝑖 = 1…𝑛

and variable in SC0 (𝑅𝑖 is the radius vector of point 𝑃𝑖 in SC0):

𝑃𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)∞𝑅⃗ 𝑖, 𝑖 = 1…𝑛,

𝑅⃗ 𝑖 = 𝑅⃗ 𝑤 + 𝑥𝑖𝑒 𝑥 + 𝑧𝑖𝑒 𝑍

The definitions of the vectors in this expression are given in the previous section.

Let 𝑍𝑇𝑖 be the Z coordinate (vertical) of terrain directly under the point 𝑃𝑖 in SC0, i.e. it cor-

responds to 𝑋𝑖, 𝑌𝑖 coordinates in plane OXY of SC0. The following point in SCWheel must be

added to the terrain curve by the method SetTerrainCurvePoint:

𝑥𝑇𝑖 = 𝑥𝑖 , 𝑧𝑇𝑖 = 𝑧𝑖 + 𝑍𝑇𝑖 − 𝑍𝑖, 𝑖 = 1…𝑛

and the normal is computed for the corresponding point on the terrain.

20.9.5. Tire blowout

Tire blowout is modeled by [1]

- instantaneous decrease of the tire radius to the rim radius;

- increase tire stiffness constant 4 times;

- increase tire rolling resistance to the drag value 0.3-0.4;

- no side force.

See:

20.9.6. Road coefficients of friction

Average values of friction coefficient [2].

Surface Peak value Sliding value

Dry Wet Dry Wet

Asphalt 0.8-0.9 0.5-0.7 0.75 0.45-0.6

SCWheel

X

Z

P1

P2

Pn

Universal Mechanism 9 20-95 Chapter 20. UM COM Interfaces

Concrete 0.8-0.9 0.8 0.75 0.7

Earth road 0.68 0.55 0.65 0.4-0.5

Gravel 0.6 0.55

Snow (packed) 0.2 0.15

Ice 0.1 0.07

20.9.7. Rolling resistance of tires

The rolling resistance is considered as a torque 𝑇𝑟𝑓 = 𝐹𝑟𝑓𝑅 applied to the wheel directed op-

posite to the wheel roll, R is the rolling radius of the tire. According to the Wong [2], the re-

sistance force is

𝐹𝑟𝑓 = 𝑓𝑁

where f is the coefficient of friction, and N is the tire normal force. The coefficient of friction

depends on the vehicle speed as [2]

𝑓 = 𝑓0 + 𝑘1𝑣 + 𝑘2𝑣
2

Here v is the speed in km/h, and 𝑓0, 𝑘1, 𝑘2 are empirical constants, which values are set by the

SetRollingFriction method. Typical values of the coefficients can be found in [2], see the table

Parameters of rolling friction

Tire f0 k1 k2

radial-ply

passenger car tire

0.0136 0 0.4e-7

bias-ply passenger car

tire

0.0169 0 0.19e-6

radial-ply truck

tire

0.006 0 0.23e-6

bias-ply truck tire 0.007 0 0.45e-6

20.9.8. Terrain roughness

20.9.8.1. Format of roughness file *.irr

Text files *.irr contain discrete roughness data for the left and right tracks. A file includes

two columns. The first column contains the distance in meters, and the second one corresponds

to the roughness height in meters. The recommended distance between points is 0.1m.

Example:

0 -0.0036114

0.1 -0.00382723

0.2 -0.00394107

0.3 -0.00395296

0.4 -0.00386557

0.5 -0.00368393

0.6 -0.00341505

Universal Mechanism 9 20-96 Chapter 20. UM COM Interfaces

0.7 -0.00306755

0.8 -0.00265132

0.9 -0.00217713

1 -0.00165643

-0.00110107

The user can either use the standard UM files or generate own files. The procedure Load-

RoadRoughness is used for assignment of files with roughness functions to the left and right

tracks. The UseRoadRoughness enables and disables the usage of the road roughness.

20.9.8.2. ISO 8608

The ISO 8608 1995 (e) classification (A-H) is used for generation of terrain roughness of dif-

ferent level [2]. The ISO standard specifies a power spectral density function (PSD):

The PSD function is [2]

𝑆(𝑛) = {
𝑆0(𝑛 𝑛0⁄)𝑁1 , 𝑛 < 𝑛0

𝑆0(𝑛 𝑛0⁄)𝑁2 , 𝑛 > 𝑛0

where n is the spatial frequency. In the ISO 8608 the following values are recommended:

𝑛0 = 1
2⁄ 𝜋, 𝑁1 = 2,𝑁2 = 1,5

The parameter 𝑆0 is the degree of roughness according to the table

Universal Mechanism 9 20-97 Chapter 20. UM COM Interfaces

Road class Degree of Roughness,

𝑆0 (× 10−6𝑚3/cycles)

Factor to UM standard roughness

√𝑆0 𝑆∗⁄

A(Very Good) <8 0-0.63

B(Good) 8-32 0.63-1.26

C(Average) 32-128 1.26-2.53

D(Poor) 128-512 2.53-5.06

E(Very Poor) 512-2048 5.06-10.12

F 2048-8192 10.12-20.24

G 8192-32768 20.24-40.48

H >32768 >40.48

20.9.8.3. UM standard roughness

UM uses the value 𝑆0 = 𝑆∗ = 20 × 10−6 (average value for the B class) as the standard one.

The height/distance functions of the standard irregularities are generated for the left and right

track and stored in the files iso_b_left_1500.irr and iso_b_right_1500.irr. The corresponding ir-

regularities are shown in the figure below. By default, the roughness files must be located in the

directory of the UM vehicle model.

The coherence function from [3] is used for generation of two-track irregularities.

Universal Mechanism 9 20-98 Chapter 20. UM COM Interfaces

Coherence function for different values of track width

20.9.8.4. Change of roughness

The SetTerrainRoughnessFactor method is used for change of the road class. The Factor=

√𝑆0/𝑆∗ parameter specifies the level of roughness. The value Factor=1 corresponds to the UM

standard irregularities. Use the factor value from the above table to set the desired roughness.

The TransitionLength sets the distance for the uniform transitions to the new irregularity lev-

el. It is zero if the roughness is set before the simulation start. Otherwise if must be positive.

20.9.9. Computation of vehicle equilibrium

The method DoEquilibriumPosition is used for computation of equilibrium position of ve-

hicle taking into account the terrain geometry. This position is used as initial one in simulation of

vehicle motion.

Computation of equilibrium is executed as simulation of vehicle dynamics at which the car

horizontal motion is locked. The simulation stops when the kinetic energy is less that the value

of the StopEnegry parameter specified by the user. Simulation time is limited to the TMax pa-

rameter.

The following steps are required.

1. Specification of terrain geometry for each of the wheels by the GetWheelPosition and

SetRoadGeometry methods. The components of normal in the SetTerrainGeometry method

are ignored.

2. Call of the DoEquilibriumPosition method.

If succeed, the DoEquilibriumPosition method returns S_OK otherwise S_FALSE

Universal Mechanism 9 20-99 Chapter 20. UM COM Interfaces

Recommended values are as follows:

TMax = 30;

StopEnergy = 0.001.

20.9.10. Change of inertia parameters. Car occupants

Here we discuss how number of occupants and their inertia parameters as well as load of a

truck can be changed. The car model must include bodies corresponding to occupants rigidly

connected to the car body. If masses and moments of inertia are zeros, it is equivalent to absence

of the occupant. Inertia parameters of occupants can be easily changed like it is described below.

Inertia parameters of bodies (mass and moments of inertia) can be changed if they are pa-

rameterized by identifiers. The following steps are recommended.

1. Get interface to the necessary identifier by the GetElementByNameEx method of the IU-

MObject interface, Sect. 20.2. "IUMObject interface", p. 20-5.

2. Set the desired value to the identifier by the SetValue method of the IComInterface inter-

face, Sect. 20.4. "IComIdentifier Interface", p. 20-10.

If steps 1,2 are made before call of the method PrepareIntegration of IUMObject interface, no

additional steps are required. If inertia parameters are changed during the simulation process,

two additional steps must be done.

3. Get interface to the body which inertia parameters are changes by the GetElementByNam-

eEx method of the IUMObject interface, Sect. 20.2. "IUMObject interface", p. 20-5.

4. Call the RefreshExpressions method of the IBody interface to accept new values of the pa-

rameters.

Example:

var ptr: pointer;

 Indentifier : IComIdentifier;

Body : IBody;

 UMObject.GetElementByNameEx(eltIdentifier, 'car.moccupant1', ptr);

 Identifier:=IUnknown(ptr) as IComIdentifier;

 Identifier.SetValue(75)

 UMObject.GetElementByNameEx(eltBody, 'car.occupant1', ptr);

 Body:=IUnknown(ptr) as IBody;

Body.RefreshExpressions;

Universal Mechanism 9 20-100 Chapter 20. UM COM Interfaces

20.9.11. Collisions

Colliding bodies A (car body), B – second (external) body.

Penetration depth : the maximal penetration of shapes. Contact points: Ca, Cb correspond to

the maximal penetration.

 Data necessary for computation of contact forces:

 ,

 coordinates of point Ca,

 velocity of point Cb of body B

 normal n to one of the colliding shapes external with respect to the car body.

20.9.12. Setting and evaluation of tire stiffness characteristics

20.9.12.1. Tire stiffness parameters

The following tire stiffness and damping characteristics are necessary in simulation of road

vehicle dynamics:

𝐶𝑠 – longitudinal stiffness (N);

𝐶𝑎 – cornering stiffness (N/rad);

𝐶𝑧 – vertical static stiffness (N/m);

𝐶𝑥 – longitudinal static stiffness (N/m);

𝐶𝑦 – lateral static stiffness (N/m);

𝑑𝑧 – vertical damping constant (Ns/m).

A
B



Ca Cb

n

Universal Mechanism 9 20-101 Chapter 20. UM COM Interfaces

Vertical, lateral and longitudinal stiffness parameters correspond to spring constants of un-

rolling tire in the corresponding direction. The vertical stiffness and damping constants 𝐶𝑧 , 𝑑𝑧 are

important parameters. They are used for computation of vertical force 𝐹𝑧 acting on the tire from

the road both is standstill and motion

𝐹𝑧 = 𝐶𝑧∆𝑧 + 𝑑𝑧∆𝑧,

where ∆𝑧 is the tire vertical deflection. It is important to know the value stiffness 𝐶𝑧 more or less

exactly, Sect. 20.9.12.5. "Approximate vertical stiffness and damping", p. 20-103.

In comparison with the vertical stiffness 𝐶𝑧, the longitudinal 𝐶𝑥 and lateral 𝐶𝑦 tire spring con-

stants are of minor importance, they are used at standstill of a road vehicle only.

Typical dependences of tire cornering (𝐹𝑦) and tractive/braking (𝐹𝑥) forces on slip angle (α) and

longitudinal slip (s)

The cornering stiffness 𝐶𝑠 and longitudinal stiffness 𝐶𝑠 are used in computation of creep

forces (cornering and tractive/braking forces in figure above),

𝐶𝑎 =
𝜕𝐹𝑦

𝜕𝛼
|
𝛼 = 0

, 𝐶𝑠 =
𝜕𝐹𝑥
𝜕𝑠

|
𝑠 = 0

,

So that for small slips

𝐹𝑦 ≈ 𝐶𝑎𝛼, 𝐹𝑥 ≈ 𝐶𝑠𝑠.

In the UM car simulator, the Fiala model [4] is implemented for computation of cornering

and tractive/braking forces. The Fiala tire model requires cornering stiffness 𝐶𝑠 and longitudinal

stiffness 𝐶𝑠.

Tire rated stiffness parameters can be assigned either directly i.g. from experiments of com-

puted according to approximate analytic expressions. In any case, the EvaluationTireRatedStiff-

Fx
Fy

α/s

Universal Mechanism 9 20-102 Chapter 20. UM COM Interfaces

ness method of the ICOMCar interface must be called right before the start of simulation and

after setting the necessary tire parameters.

20.9.12.2. Rated stiffness parameters. Influence of inflation pressure

Values of tire stiffness parameters depend on the tire inflation pressure. Let

𝐶𝑠0, 𝐶𝑎0, 𝐶𝑧0, 𝑑𝑧0 be the values of the stiffness and damping parameters for rated inflation pres-

sure 𝑝0 and rated load 𝑊0. The following simplified dependences on the inflation pressure p are

accepted:

𝐶𝑠 =
𝑝

𝑝0
𝐶𝑠0, 𝐶𝑎 =

𝑝

𝑝0
𝐶𝑎0, 𝐶𝑧 =

𝑝

𝑝0
𝐶𝑧0, 𝑑𝑧 = √

𝑝

𝑝0
𝑑𝑧0.

The actual pressure can be assigned to each of the tires both before the simulation start and

during the simulation, the method SetTireCurrentPressure.

20.9.12.3. Direct assignment of rated stiffness parameters

By default, the rated parameters 𝐶𝑠0, 𝐶𝑎0, 𝐶𝑧0, 𝑑𝑧0 are assigned directly by the methods

(Sect. 20.9.1. "IComCar interface", p. 20-81).

SetTireLongitudinalStiffness

SetTireCorneringStiffness

SetTireVericalStiffness

20.9.12.4. Approximate evaluation of tire rated stiffness parameters

To specify the approximate assessment of tire rated stiffness parameters, the SetAutoEvalua-

tionTireStiffness method of ICOMCar interface is used (Sect. 20.9.1. "IComCar interface", p.

20-81). The argument values denotes

Vertical = 1 : evaluation of 𝐶𝑧0, 𝑑𝑧0

Cornering = 1 : evaluation of 𝐶𝑎0

Longitudinal = 1 : evaluation of 𝐶𝑠0

Example: SetAutoEvaluationTireStiffness(0, 1, 1) : evaluation of 𝐶𝑎0, 𝐶𝑠0.

The following additional tire parameters are necessary for approximate computation of the

tire stiffness characteristics:

R – tire unloaded radius (the method SetTireUnloadedRadius);

w – tire section width (the method SetTireSectionWidth);

W0 – tire rated load (the method SetTireRatedLoad);

𝛽𝑧 ∈ [0.3,0.75] – vertical damping ratio (the method SetTireDampingRatio) for evaluation of

the vertical damping constant 𝑑𝑧0 only;

𝜆𝑦 ∈ [0.8,0.18] – cornering coefficient (the method SetCorneringCoefficient) for evaluation

of the cornering stiffness 𝐶𝑎0 only, Sect. 20.9.12.6. "Approximate cornering stiffness", p. 20-103.

Typical value of cornering coefficient is 0.12 for bias-ply tires and 0.16 for radial ply tires [5].

Universal Mechanism 9 20-103 Chapter 20. UM COM Interfaces

20.9.12.5. Approximate vertical stiffness and damping

According to [6], the vertical tire spring constant with less than 20% error tolerance can be

computed as

𝐶𝑧0 = 𝜋𝑝0√2𝑅𝑤.

The damping constant is evaluated according to the damping ratio parameter

𝑑𝑧0 = 2𝛽𝑧√𝐶𝑧0𝑚𝑤

Here 𝑚𝑤 is mass of wheel.

20.9.12.6. Approximate cornering stiffness

According to [2], the cornering coefficient 𝜆𝑦 ∈ [0.8,0.18] is equal to the ratio of the lateral

force at 1 degree of sleep angle to the tire load, so the cornering stiffness is

𝐶𝑎0 = 𝜆𝑦𝑊0

𝜋

180
.

Table of cornering coefficient values for different tires is presented in [2].

20.9.12.7. Approximate longitudinal stiffness

Expression for evaluation of the longitudinal tire stiffness 𝐶𝑠0 is proposed in the report [7]

𝐶𝑠0 =
2

𝐿𝑡
2 𝜿𝑊0

where 𝜿 ≈ 18, 𝐿𝑡 – length of tire contact patch,

𝐿𝑡 ≈ 2𝑅√
2𝑊0

𝐶𝑧0𝑅

20.9.12.8. Longitudinal and lateral static stiffness

Lateral static stiffness is computed in term of the cornering stiffness [2] as

𝐶𝑦 =
𝐶𝑎

0.8𝑅 + 𝐿𝑡 2⁄
.

We take the value of longitudinal static stiffness equal to the lateral static stiffness

𝐶𝑥 = 𝐶𝑦

Universal Mechanism 9 20-104 Chapter 20. UM COM Interfaces

20.9.13. Run over the pebble

Model of a pebble under the tire

Consider a simplified model of a tire runs over a pebble. The model includes an additional

vertical force 𝐹𝑝, which is proportional to some effective pebble area 𝑆𝑝. Let 𝑑𝑧0 be the static

deflection of the tire, which we interpret here as a penetration of the tire circle into the road sur-

face, and 𝑆0 be the area of the penetration. These parameters are dependent as

𝑑𝑧0 =
𝑆0

2

2𝑅3

According to the linear model of the vertical tire force, the static tire force is proportional to

the deflection 𝑑𝑧0

𝐹𝑧0 = 𝐶𝑧𝑑𝑧0 = 𝐶𝑧

𝑆0
2

2𝑅3

Consider a pebble under the tire. If we assume that the penetration area in this case is in-

creased to the value 𝑆 = 𝑆0 + 𝑆𝑝, and accept the square dependence of the tire force on the pene-

tration area, we obtain

𝐹𝑧 = 𝐹𝑧0 + 𝐹𝑝 = 𝐶𝑧

(𝑆0 + 𝑆𝑝)
2

2𝑅3
= 𝐶𝑧

𝑆0
2(1 + 𝑆𝑝 𝑆0⁄)

2

2𝑅3
≈ 𝐹𝑧0 + 𝐹𝑧0

2𝑆𝑝

𝑆0
,

and finally

𝐹𝑝 = 2𝐹𝑧0𝑘𝑝, 𝑘𝑝 =
𝑆𝑝

𝑆0
.

Here we have introduced the pebble size factor 𝑘𝑝, which specifies the value of the additional

vertical force 𝐹𝑝.

Use the SetPebbleUnderTire method to set a pebble under any of the tires during the simula-

tion process.

Remark. The feature is used for simulation of small pebbles, so that kp<0.5.

S0

dz0

Sp

Fp

Fz0

Universal Mechanism 9 20-105 Chapter 20. UM COM Interfaces

20.10. Interface for internal combustion engine (ICE)

See the user’s manual, Chapter 22, file for detailed description of the ICE models in UM.

Interface: IComICEngine

Hierarchy: IUnknown – IComICEngine

20.10.1. Methods of IComICEngine interface

The interface is available by the GetICEngine method of the IComCar interface, Sect. 20.9.1.

"IComCar interface", p. 20-81.

Methods Description

SetICEType HRESULT _stdcall SetICEType([in] int Value);

Sets the engine type

Input: value: 0 – none, 1 – spark ignition, 2 – diesel.

GetICEType int _stdcall GetICEType(void);

Returns the engine type.

Result: 1 : spark ignition engine; 2 – diesel engine

SetNCylinders HRESULT _stdcall SetNCylinders([in] int Value);

Sets number of cylinders

GetNCylinders int _stdcall GetNCylinders(void);

Returns number of cylinders as a result

SetNStrokes HRESULT _stdcall SetNStrokes([in] int Value);

Sets number of strokes

GetNStrokes int _stdcall GetNStrokes(void);

Returns number of strokes as a result

SetPistonStroke HRESULT _stdcall SetPistonStroke([in] double Value);

Sets length of piston stroke, mm

GetPistonStroke HRESULT _stdcall GetPistonStroke([out] double* Val-

ue);

Returns length of piston stroke, mm

SetCapacity HRESULT _stdcall SetCapacity([in] double Value);

Sets engine capacity, L

GetCapacity HRESULT _stdcall GetCapacity([out] double* Value);

Returns engine capacity, L

SetEniginePower HRESULT _stdcall SetEniginePower([in] double Val-

ue);

Sets the engine power, kW

GetEnginePower HRESULT _stdcall GetEnginePower([out] double*

Value);

Returns the engine power, kW

SetMaxTorque HRESULT _stdcall SetMaxTorque([in] double Value,

[in] double Speed);

22_um_driveline.pdf

Universal Mechanism 9 20-106 Chapter 20. UM COM Interfaces

Sets the engine maximal torque value and the corre-

sponding speed.

Input: Value – maximal torque, Nm

 Speed : engine speed for maximal torque, rpm

GetMaxTorque HRESULT _stdcall GetMaxTorque([out] double* Val-

ue, [out] double* Speed);

Returns the current values of engine maximal torque

value and the corresponding speed.

Output: Value – maximal torque, Nm

 Speed : engine speed for maximal torque, rpm

SetMinMaxSpeed HRESULT _stdcall SetMinMaxSpeed([in] double Min-

Speed, [in] double MaxSpeed);

Sets values of the minimal and maximal (speed for

nominal power) engine speed, rpm

GetMinMaxSpeed HRESULT _stdcall GetMinMaxSpeed([out] double*

MinSpeed, [out] double* MaxSpeed);

Returns values of the minimal and maximal (speed for

nominal power) engine speed, rpm

SetGovernorType HRESULT _stdcall SetGovernorType([in] int Value);

Sets the engine governor type depending on the engine

type.

Input:

Spark ignition engine

Value : 0 (None), 1 (One speed)

Diesel engine

Value: 2 (MinMax or two speed), 3 (all speed).

See Chapter 22, Sect. Engine governors

GetGovernorType int _stdcall GetGovernorType(void);

Returns the engine governor type depending on the en-

gine type.

Result : 0 (None), 1 (One speed), 2 (MinMax or two

speed), 3 (all speed).

See Chapter 22, Sect. Engine governors

SetEngineStart HRESULT _stdcall SetEngineStart(void);

Starts the engine

SetEngineStop HRESULT _stdcall SetEngineStop(void);

Engine stalls

GetEngineState int _stdcall GetEngineState(void);

Returns the engine state.

Result : 0 (off), 1 (start mode, the engine speed increas-

es to the idle value), 2 (operation mode).

GetEngineSpeed HRESULT _stdcall GetEngineSpeed([out] double*

RPM);

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf

Universal Mechanism 9 20-107 Chapter 20. UM COM Interfaces

Returns the engine speed, rpm

SetAnalyticICEModelType HRESULT _stdcall SetAnalyticICEModelType(void);

Sets analytic model type for the torque map model. The

method must be used for ICE models constructed with

UM COM (not with UM full)/

See Chapter 22, Sect. Engine torque map

SetMapFormFactor HRESULT _stdcall SetMapFormFactor([in] double

Value);

Sets the engine torque map form factor s.

See Chapter 22, Sect. Analytic engine map for spark

ignition engine; Analytic engine map for diesel engine

GetMapFormFactor HRESULT _stdcall GetMapFormFactor([out] double*

Value);

Returns the current value of the engine torque map form

factor s.

See Chapter 22, Sect. Analytic engine map for spark

ignition engine; Analytic engine map for diesel engine

SetMapSpecialSpeed HRESULT _stdcall SetMapSpecialSpeed([in] double

Value);

Sets the special speed for engine torque n*, rpm (spark

ignition engine only).

See Chapter 22, Sect. Analytic engine map for spark

ignition engine

GetMapSpecialSpeed HRESULT _stdcall GetMapSpecialSpeed([out] double*

Value);

Returns the special speed for engine torque n*, rpm

(spark ignition engine only).

See Chapter 22, Sect. Analytic engine map for spark

ignition engine

SetFullLoadCurveCoefs HRESULT _stdcall SetFullLoadCurveCoefs([in] double

a, [in] double b, [in] double c);

Sets Lederman parameters of the full load torque-speed

curve for both spark ignition and diesel engine.

Input: a, b, c – values of Lederman parameters

See Chapter 22, Sect. Full load torque-speed curve

GetFullLoadCurveCoefs HRESULT _stdcall GetFullLoadCurveCoefs([out] dou-

ble* a, [out] double* b, [out] double* c);

Returns Lederman parameters of the full load torque-

speed curve for both spark ignition and diesel engine.

Output: a, b, c – values of Lederman parameters

See Chapter 22, Sect. Full load torque-speed curve

ComputeDieselFullLoadCurveCoefs HRESULT _stdcall ComputeDie-

selFullLoadCurveCoefs([in] int ModelType, [in] double

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf

Universal Mechanism 9 20-108 Chapter 20. UM COM Interfaces

KM, [in] double Kn);

Computes the Leiderman a, b, c parameters for the full

load torque-speed curve in case of diesel engine.

Input: Model type: 1 (Variant 1 of the model); 2 (Vari-

ant 2 of the model)

See Chapter 22, Sect. Full load torque-speed curve

SetTorqueLost HRESULT _stdcall SetTorqueLost([in] double A, [in]

double B);

Sets torque lost parameters 𝑀fa, 𝑀fb, see Chapter 22,

Sect. Torque lost

GetTorqueLost HRESULT _stdcall GetTorqueLost([out] double* A,

[out] double* B);

Returns torque lost parameters 𝑀fa, 𝑀fb, see Chapter 22,

Sect. Torque lost

GetFMEP HRESULT _stdcall GetFMEP([out] double* p0, [out]

double* p1);

Returns current values of fmep parameters p1, p2, see

Chapter 22, Sect. Torque lost

SetFMEP HRESULT _stdcall SetFMEP([in] double p0, [in] dou-

ble p1);

Sets fmep parameters p1, p2, see Chapter 22,

Sect. Torque lost

ComputeTorqueLostParams HRESULT _stdcall ComputeTorqueLostParams(void);

Computes torque lost parameters 𝑀fa, 𝑀fb for the cur-

rent values of fmep parameters p1, p2, see Chapter 22,

Sect. Torque lost

SetMinMaxSpeedDroop HRESULT _stdcall SetMinMaxSpeedDroop([in] dou-

ble MinSpeedDroop, [in] double MaxSpeedDroop);

Sets the governor parameters.

Input: MinSpeedDroop 𝛿min (for two- and all-speed

governors), %,

MaxSpeedDroop 𝛿max (for any governor), %.

See Chapter 22, Sect. Engine governors

GetMinMaxSpeedDroop HRESULT _stdcall GetMinMaxSpeedDroop([out] dou-

ble* MinSpeedDroop, [out] double* MaxSpeedDroop);

Returns the governor parameters.

Output: MinSpeedDroop 𝛿min (for two- and all-speed

governors), %,

MaxSpeedDroop 𝛿max (for any governor), %.

See Chapter 22, Sect. Engine governors

ReadFromFile HRESULT _stdcall ReadFromFile([in] LPSTR File-

Name);

Reads engine model parameters from a text file *.ice.

file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf
file://///UMSTORAGE2/public/Projects/UM%20Manual/eng/22_um_driveline.pdf

Universal Mechanism 9 20-109 Chapter 20. UM COM Interfaces

Input: FileName – direct path to the file

SaveToFile HRESULT _stdcall SaveToFile([in] LPSTR FileName);

Saves engine model parameters to a text file *.ice.

Input: FileName – direct path to the file

Most of the methods return HResult=S_OK in the case of a successful termination and

S_FALSE in case of failure.

20.10.2. Development of ICE model with IComICEngine interface

Here we consider a calling sequence of the IComICEngine method for full description of a

ICE model with UM COM server.

1. Load a car model by the LoadObjectFromFile method of the IUMObject interface.

2. Get the IComCar interface then the GetCar method of the IUMObject interface

3. Get the IComICEngine interface by the GetICEngine method of the IComCar interface

4. Set general information about the engine by the methods

SetICEType

SetNCylinders

SetNStrokes

SetPistonStroke

SetCapacity

SetEniginePower

SetMaxTorque

SetMinMaxSpeed

SetAnalyticICEModelType

5. Specify analytic full load torque curve by the method

SetFullLoadCurveCoefs

In the case of a diesel engine, the method ComputeDieselFullLoadCurveCoefs can be used

instead of the SetFullLoadCurveCoefs

6. Specify the friction torque lost.

Use the parameters 𝑀𝑓𝑎, 𝑀𝑓𝑏 are available, use the SetTorqueLost method, otherwise use

the methods

SetFMEP

ComputeTorqueLostParams

7. Set the torque map parameters by the methods

SetMapFormFactor

SetMapSpecialSpeed (for spark ignition engine only)

8. Specify the governor type and parameters by the methods

SetGovernorType

SetMinMaxSpeedDroop (if a governor is presented)

9. If necessary, save the model to a file by the method SaveToFile.

Universal Mechanism 9 20-110 Chapter 20. UM COM Interfaces

References

[1] Bareket Z., Blower D. F., MacAdam C., Blowout Resistant Tire Study for Commercial

Highway Vehicles, Final Technical Report for Task Order No. 4 (DTRS57-97-C-00051),

UMTRI, 2000.

[2] Wong J.Y. Theory of Ground Vehicles. 4th Edition. Wiley. 2008.

[3] Robson J.D., (1979) Road Surface Description and Vehicle Response, International Journal

of Vehicle Design,. 1(1), 25–35.

[4] UM User’s manual. Simulation of Road Vehicle Dynamics, file 12_UM_Automotive.pdf.

[5] John C. Dixon. Tires, Suspension and Handling. Cambridge University Press, 1996. Second

Edition.

[6] Nybakken G.H., Clark S.K., Vertical and lateral stiffness characteristics of aircraft tires.

NASA contractor report NAS CR-1488, University of Michigan, 1969.

[7] Szostak H.T., Allen W.R., Rosenthal T.J., Analytical Modeling of Driver Response in Crash

Avoidance Maneuvering Volume II: An Interactive Model for Driver/Vehicle Simulation,

U.S Department of Transportation Report NHTSA DOT HS-807-271, April 1988.

